Data Sheet

Description

The ACPL-M49U is a single channel, high temperature, high CMR, 20kBd digital optocoupler, configurable as a low power, low leakage phototransistor, specifically for use in industrial applications. The SO-5 JEDEC registered (MO-155) package outline is surface mountable.

This digital optocoupler uses an insulating layer between the light emitting diode and an integrated photo detector to provide electrical insulation between input and output. Separate connections for the photodiode bias and output transistor collector in a 5-pin configuration increase the speed up to a hundred times over that of a conventional phototransistor by reducing the base-collector capacitance. Common connections with the supply and output pins shorted in a 4-pin configuration delivers low power, low leakage performance as a phototransistor. The ACPL-M49U has an increased common mode transient immunity of $15 \mathrm{kV} / \mu \mathrm{s}$ minimum at $\mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}$ over extended temperature range.

Avago R^{2} Coupler isolation products provide the reinforced insulation and reliability needed for critical in high temperature industrial applications.

Features

- High Temperature and Reliable low speed digital interface for Industrial Application.
- $30 \mathrm{kV} / \mu \mathrm{s}$ High Common-Mode Rejection at $\mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}$ (typ)
- Low Power, Low Leakage Phototransistor in a 4-Pin Configuration
- Compact, Auto-Insertable SO5 Packages
- Wide Temperature Range: $-40^{\circ} \mathrm{C} \sim 125^{\circ} \mathrm{C}$
- Low LED Drive Current: 4mA (typ)
- Propagation Delay: 20 \quad s (max)
- Worldwide Safety Approval:
- UL 1577, 3750 VRMS $/ 1 \mathrm{~min}$.
- CSA File CA88324, Notice \#5
- IEC/EN/DIN EN 60747-5-5

Applications

- Low Speed Digital Signal isolation Interface
- Inverter fault feedback signal isolation
- Switching Power Supplies feedback circuit

Functional Diagrams

Note: The connection of a $0.1 \mu \mathrm{~F}$ bypass capacitor between pins 4 and 6 is recommended for 5 -pin configuration

Note: Pins 5 and 6 are externally shorted for 4-pin configuration.

Ordering Information

Part Number	Option	Package	Surface Mount	Tape \& Reel	Quantity
	(RoHS) Compliant				
ACPL-M49U	-000E	SO-5	X		100 per tube
	-500E		X	X	1500 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.

Example:

ACPL-M49U-500E to order product of Mini-flat Surface Mount 5-pin package in Tape and Reel packaging with RoHS compliant.

Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

Package Outline Drawings

ACPL-M49U Small Outline SO-5 Package (JEDEC MO-155)

Land Pattern Recommendation

Dimension in Millimeters (Inches)

Land Pattern Recommendation (4-pin Configuration)

Recommended Pb-Free IR Profile

Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision).
Note: Non-halide flux should be used.

Regulatory Information

The ACPL-M49U is approved by the following safety regulatory organizations:

UL

IEC/EN/DIN EN 60747-5-5
Approved under UL 1577, component recognition program up to $\mathrm{V}_{\text {ISO }}=3750 \mathrm{~V}_{\text {RMS }}$

CSA
Approved under CSA Component Acceptance Notice \#5.

IEC/EN/DIN EN 60747-5-5 Insulation Characteristics*

Description	Symbol	Characteristic	Unit
Installation classification per DIN VDE 0110/1.89, Table 1 for rated mains voltage $\leq 150 \mathrm{~V}_{\text {rms }}$ for rated mains voltage $\leq 300 \mathrm{~V}_{\text {rms }}$ for rated mains voltage $\leq 600 \mathrm{~V}_{\text {rms }}$		$\begin{aligned} & \text { I - IV } \\ & \text { I - III } \\ & \text { I - II } \end{aligned}$	
Climatic Classification		40/125/21	
Pollution Degree (DIN VDE 0110/1.89)		2	
Maximum Working Insulation Voltage	VIORM	567	$V_{\text {peak }}$
Input to Output Test Voltage, Method b* $V_{\text {IORM }} \times 1.875=V_{\text {PR, }} 100 \%$ Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, Partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1063	$V_{\text {peak }}$
Input to Output Test Voltage, Method a* VIORM $\times 1.6=$ V PR , Type and Sample Test, $\mathrm{t}_{\mathrm{m}}=10 \mathrm{sec}$, Partial discharge $<5 \mathrm{pC}$	$V_{P R}$	907	$V_{\text {peak }}$
Highest Allowable Overvoltage (Transient Overvoltage $\mathrm{t}_{\text {ini }}=60 \mathrm{sec}$)	$\mathrm{V}_{\text {IOTM }}$	6000	$V_{\text {peak }}$
Safety-limiting values - maximum values allowed in the event of a failure.			
Case Temperature	Ts	175	${ }^{\circ} \mathrm{C}$
Input Current	IS, input	150	mA
Output Power	Ps, output	600	mW
Insulation Resistance at $\mathrm{T}_{\mathrm{S}}, \mathrm{V}_{10}=500 \mathrm{~V}$	RS	$>10^{9}$	Ω

[^0]
Insulation and Safety Related Specifications

Parameter	Symbol	ACPL-M49U	Units	Conditions
Minimum External Air Gap (Clearance)	$\mathrm{L}(101)$	≥ 5	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	$\mathrm{L}(102)$	≥ 5	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)	0.08	mm	Through insulation distance conductor to conductor, usu- ally the straight line distance thickness between the emitter and detector.	
Tracking Resistance (Comparative Tracking Index)	CTI	175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group (DIN VDE0109)		IIIa		Material Group (DIN VDE 0109)

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	Note
Storage Temperature	T_{S}	-55	150	${ }^{\circ} \mathrm{C}$	
Operating Temperature	T_{A}	-40	125	${ }^{\circ} \mathrm{C}$	
Lead Soldering Cycle	Temperature		260	${ }^{\circ} \mathrm{C}$	
	Time		10	s	
Average Forward Input Current	$\mathrm{I}_{\mathrm{F}(\text { avg }}$		20	mA	1
Peak Forward Input Current $(50 \%$ duty cycle, 1ms pulse width)	$\mathrm{I}_{\mathrm{F}(\mathrm{peak})}$	40	mA	2	
Peak Transient Input Current (<=1us pulse width, 300ps)	$\mathrm{I}_{\mathrm{F}(\text { trans }}$		100	mA	2
Reversed Input Voltage	V_{R}		5	V	mW
Input Power Dissipation	P_{IN}		30	mW	
Output Power Dissipation	P_{O}		100	mW	3
Average Output Current	I_{O}		8	mA	
Peak Output Current	$\mathrm{I}_{\mathrm{O}(\mathrm{pk})}$		16	mA	
Supply Voltage (Pins 6-4)	V_{CC}	-0.5	30	V	
Output Voltage (Pins 5-4)	V_{O}	-0.5	20	V	
Solder Reflow Temperature Profile			See Reflow Temperature Profile		

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Note
Supply Voltage	V_{CC}		20.0	V	
Operating Temperature	T_{A}	-40	125	${ }^{\circ} \mathrm{C}$	

Electrical Specifications (DC) for 5-Pin Configuration

Over recommended operating $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified.

Parameter	Sym.	Min.	Typ.	Max.	Units	Conditions			Fig.	Note
Current Transfer Ratio	CTR	32	45	80	\%	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$	$\begin{aligned} & V_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \end{aligned}$	1,2	5
		20	45				$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$			
			58			$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA} \end{aligned}$	1,2	5
Logic Low Output Voltage	VoL		0.1	0.4	V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{l}=3 \mathrm{~mA}$	$\begin{aligned} & V_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \end{aligned}$	3	
				0.5			$\mathrm{l}_{\mathrm{O}}=2.4 \mathrm{~mA}$			
Logic High Output Current	lOH		0.003	0.5	$\mu \mathrm{A}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$	7	
			0.01	1		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$			
				5						
Logic Low Supply Current	$\mathrm{I}_{\mathrm{CCL}}$		50	200		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=$ open, $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$				
Logic High Supply	ICCH		0.02	1		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}=$ open, $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$			
Current				2.5						
Input Forward Voltage	V_{F}	1.45	1.5	1.75	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			5	
		1.25	1.5	1.85		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$,	Across Temper			
			1.5			$\mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}, \mathrm{~T}$	$5^{\circ} \mathrm{C}$			
Input Reversed Breakdown Voltage	$B V_{\text {R }}$	5				$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$				
Temperature Coefficient of Forward Voltage	$\Delta \mathrm{V} / \Delta \mathrm{T}_{\mathrm{A}}$		-1.5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$				
Input Capacitance	$\mathrm{C}_{\text {IN }}$		90		pF	$\mathrm{F}=1 \mathrm{MHz}$,				

Switching Specifications (AC) for 5-Pin Configuration

Over recommended operating ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$), $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ unless otherwise specified.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions		Fig.	Note	
Propagation Delay Time to Logic Low at Output	$t_{\text {PHL }}$	-	-	20	$\mu \mathrm{s}$	Pulse: $\mathrm{f}=10 \mathrm{kHz}$, Duty cycle $=50 \%$, $\mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega$, $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \mathrm{V}_{\text {THHL }}=1.5 \mathrm{~V}$		9		
Propagation Delay Time to Logic High at Output	$t_{\text {PLH }}$	-	-	20	$\mu \mathrm{s}$	$\begin{aligned} & \text { Pulse: } \mathrm{f}=10 \mathrm{kHz}, \text { Duty cycle }=50 \%, \\ & \mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega, \\ & \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \mathrm{~V}_{\mathrm{TH} L}, \\ & \text { o }=2.0 \mathrm{~V} \end{aligned}$		9		
Common Mode Transient Immunity at Logic High Output	$\left\|C M_{H}\right\|$	15	30		kV/ $/$ s	$\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega \end{aligned}$	10	9	
Common Mode Transient Immunity at Logic Low Output	\|CML		15	30		kV/ $\mu \mathrm{s}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega \end{aligned}$		
Common Mode Transient Immunity at Logic Low Output	\|CM ${ }_{\text {L }}$	-	15		kV/ $\mu \mathrm{s}$	$\mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=1500 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega \end{aligned}$			

Electrical Specifications (DC) for 4-Pin Configuration

Applicable for $\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{O}}$. Over recommended operating $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, unless otherwise specified.

Parameter	Sym.	Min.	Typ.	Max.	Units	Conditions	Fig.	Note
Current Transfer Ratio	CTR		120		\%	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	4	5,8
Current Transfer Ratio	$\begin{aligned} & \text { CTR } \\ & \text { (Sat) } \end{aligned}$	20	45		\%	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \quad \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$	5	5,8
			58			$\mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}$		
Logic Low Output Voltage	$\mathrm{V}_{\text {OL }}$		0.1	0.4	V	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \quad \mathrm{I}_{\mathrm{O}}=3 \mathrm{~mA} \quad \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	5	8
				0.5		$\mathrm{I}_{\mathrm{O}}=2.4 \mathrm{~mA}$		
Off-State Current	$\mathrm{I}_{\text {(CEO) }}$		0.0001	5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}$	8	8
Input Forward Voltage	V_{F}	1.45	1.5	1.75	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	6	
		1.25	1.5	1.85		$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=$ Across Temperature		
			1.45			$\mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		
Temperature Coefficient of Forward Voltage	$\Delta \mathrm{V} / \Delta \mathrm{T}_{\mathrm{A}}$		-1.5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$		
Input Reversed Breakdown Voltage	$B V_{\text {R }}$	5				$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$		
Input Capacitance	$\mathrm{CIN}_{\text {I }}$		90		pF	$\mathrm{F}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0$		
Output Capacitance	$\mathrm{C}_{\text {CE }}$		35		pF	$\mathrm{F}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0, \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$		8

Switching Specifications (AC) for 4-Pin Configuration

Over recommended operating ($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$), $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ unless otherwise specified.
$\left.\begin{array}{lllllllllll}\hline \text { Parameter } & \text { Symbol } & \text { Min. } & \text { Typ. } & \text { Max. } & \text { Units } & \text { Test Conditions } & \text { Fig. } & \text { Note } \\ \hline \begin{array}{l}\text { Propagation Delay Time } \\ \text { to Logic Low at Output }\end{array} & \text { t } \mathrm{PHL} & - & 2 & 100 & \mu \mathrm{~s} & \begin{array}{l}\text { Pulse: } \mathrm{f}=1 \mathrm{kHz}, \text { Duty cycle }=50 \%, \\ \mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=8.2 \mathrm{k} \Omega,\end{array} & 10 & 8 \\ \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \mathrm{V}_{\mathrm{THHL}}=1.5 \mathrm{~V}\end{array}\right)$

Package Characteristics

*The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Input-Output Momentary Withstand Voltage*	$\mathrm{V}_{\mathrm{ISO}}$	3750			$\mathrm{~V}_{\mathrm{RMS}}$	$\mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min} ;$ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	6,7	
Input-Output Resistance	$\mathrm{R}_{\mathrm{I}-\mathrm{O}}$		10^{14}	Ω	$\mathrm{~V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{~V}_{\mathrm{DC}}$	6		
Input-Output Capacitance	$\mathrm{C}_{\mathrm{I}-\mathrm{O}}$		0.6	pF	$\mathrm{f}=1 \mathrm{MHz} \mathrm{V}_{\mathrm{I}-\mathrm{O}}=0 \mathrm{~V}_{\mathrm{DC}}$	6		

Notes

1. Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.25 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
2. Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.30 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $0.375 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. Derate linearly above $85^{\circ} \mathrm{C}$ free-air temperature at a rate of $1.875 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
5. Current Transfer Ratio in percent is defined as the ratio of output collector current, I_{0}, to the forward LED input current, I_{F}, times 100.
6. Device considered a two terminal device: pins 1 and 3 shorted together, and pins 4,5 ,and 6 shorted together.
7. In accordance with UL 1577 , each optocoupler is proof tested by applying an insulation test voltage $\geq 4800 \mathrm{~V}_{\text {RMS }}$ for 1 second.
8. This is in a 4-pin configuration where the V_{CC} and V_{O} pin are shorted together.
9. Common transient immunity in a Logic High level is the maximum tolerable (positive) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the rising edge of the common mode pulse, V_{CM}, to assure that the ouput will remain in a Logic High state (i.e., Vo $>2.0 \mathrm{~V}$). Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) $\mathrm{dV}_{\mathrm{CM}} / \mathrm{dt}$ on the falling edge of the common mode pulse signal, V_{CM} to assure that the output will remain in a Logic Low state (i.e., Vo < 0.8V).

Figure 1. Normalized Current Transfer Ratio ($\mathrm{I}_{\mathrm{F}}=4 \mathrm{~mA}$ as reference) vs Input Current

Figure 3. Typical Low Level Output Current vs Output Voltage

Figure 5. Typical Low Level Output Current vs Output Voltage (4-Pin Configuration)

Figure 2. Normalized Current Transfer Ratio ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ as reference) vs Temperature

Figure 4. Output Current vs Output Voltage (4-Pin Configuration)

Figure 6. Typical Input Current vs Forward Voltage

Figure 7. Typical High Level Output Current vs Temperature

Figure 8. Typical 0ff-State Current vs Temperature (4-Pin Configuration)

Figure 9. Switching Test Circuit

Figure 10. Switching Test Circuit (4-pin configuration)

Figure 11. Test Circuit for Transient Immunity and Typical Waveforms

Figure 12. Test Circuit for Transient Immunity and Typical Waveforms (4-Pin Configuration)

[^0]: * Refer to the optocoupler section of the Isolation and Control Components Designer's Catalog, under Product Safety Regulations section, (IEC/EN/ DIN EN 60747-5-5) for a detailed description of Method a and Method b partial discharge test profiles.

