DEMO MANUAL DC1477A

LTM4609EV: $36 \mathrm{~V}_{\mathrm{IN}}, 34 \mathrm{~V}_{\text {OUt }}$ Buck-Boost DC/DC μ Module ${ }^{®}$ Regulator

DESCRIPTION

Demonstration circuit DC1477A features the LTM ${ }^{\circledR} 4609 E V$, a high voltage, high efficiency, high density switch mode buck-boost power module. The LTM4609EV regulates an output voltage above, below or equal to the input voltage. DC1477A accepts an input voltage from 10V to 36V with a preset output voltage of 30 V at up to 3 A . Derating may be necessary for certain $\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$ and thermal conditions. An input π filter option is included on the DC1477A to minimize the input ripple. The switching frequency may be synchronized to an external clock from 200 kHz to

400 kHz to reduce undesirable frequency harmonics and/ or parallel multiple modules for even higher output current. The LTM4609 data sheet must be read in conjunction with this demo manual prior to working on or modifying demo circuit DC1477A

Design files for this circuit board are available at http://www.linear.com/demo
$\boldsymbol{\mathcal { T }}$, LT, LTC, LTM, μ Module, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PGRFORMAOCE SUMMARY $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

PARAMETER	CONDITION	VALUE
Minimum Input Voltage		10 V to 36 V
Output Voltage $\mathrm{V}_{\text {OUT }}$		$30 \mathrm{~V} \pm 2 \%$
Maximum Continuous Output Current	Derating is Necessary for certain $\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$ and Thermal Conditions	$3 \mathrm{~A} \mathrm{DC} \mathrm{at} 10 \mathrm{~V}_{\text {IN }}$ 8 A DC at 24 V $10 \mathrm{~A} \mathrm{DC} \mathrm{at} \mathrm{V}_{\text {IN }}>30 \mathrm{~V}$
Default Operating Frequency		300 kHz
Efficiency	$\mathrm{V}_{\text {IN }}=20 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=30 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=3 \mathrm{~A}$	96.7%, See Figure 3 for More Information

BOARD PHOTO

DEMO MANUAL DC1477A

PUICK START PROCEDURE

Demonstration circuit DC1477A is an easy way to evaluate the performance of the LTM4609EV. Please refer to Figure 1 for proper measurement equipment setup and follow the procedure below:

1. Place jumpers in the following positions for a typical $30 V_{\text {OUT }}$ application:

RUN	CLOCK	MODE	START
ON	PROG	CCM	SSO

2. With the power supply off, connect the input power supply, load and meters as shown in Figure 1. Preset the load to 0 A and $\mathrm{V}_{\text {IN }}$ supply between 10 V to 36 V .
3. Turn on the power at the input. The output voltage should be $30 \mathrm{~V} \pm 2 \%$.
4. Once the proper output voltage is established, adjustthe load within the operating range and observe the output voltage regulation, ripple voltage, efficiency and other parameters. A cooling fan and heat sink are necessary for $\mathrm{V}_{\text {IN }}<10 \mathrm{~V}$ and $\mathrm{I}_{\text {OUT }}=3 \mathrm{~A}$.
5. To measure input and output ripple, please refer to Figure 2 for proper setup.
6. To adjust the switching frequency turn off the power supply and modify R6 and R7. Do not allow voltage at pin PLLFLTR to exceed 2.4V.
7. Inductor and RSENSE should be modified to accommodate certain input and output condition. Refer to the data sheet for details.
8. The input filter formed by CIN2, L2 and L3, CIN3 and CIN4 is for the purpose of reducing the input voltage ripple. The magnetic beads L 2 and L 3 are not necessary, but they help to reduce the high frequency ringings on the input supply significantly. See Figure 5 for details.
9. The optional components Rsnb1 and Csnb1, Rsnb2 and Csnb2 can be used to form RC snubber circuits on the switching nodes, which may help to reduce the output ripple. Refer to the data sheet for details.

PUICK START PROCEDURE

Figure 1. Test Setup of DC1477A

Input or Output Capacitor
Figure 2. Proper Scope Probe Placement for Measuring Input or Output Ripple

DEMO MANUAL DC1477A

DUICK START PROCEDURE

Figure 3. Measured Efficiency at Different $V_{I N}$

PUICK START PROCEDURE

$\mathrm{V}_{\text {IN }}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=30 \mathrm{~V}$, CCM Mode
1.5A to 3A Load Step
$\mathrm{C}_{\text {OUT }}=2 \times 10 \mu \mathrm{~F}$ Ceramic $+2 \times 100 \mu \mathrm{~F}$ Alum

$\mathrm{V}_{\text {IN }}=36 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=30 \mathrm{~V}$, CCM Mode
1.5A to 3A Load Step
$\mathrm{C}_{\text {OUT }}=2 \times 10 \mu \mathrm{~F}$ Ceramic $+2 \times 100 \mu \mathrm{~F}$ Alum

Figure 4. Measured Load Transient Response (1.5A Step, 50\% to 100\%)

$V_{\text {IN }}=10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=30 \mathrm{~V}, I_{\text {OUT }}=3 \mathrm{~A}$
W/O Input Filter: Short L2 and L3, Remove $\mathrm{C}_{\mathrm{IN} 2}$
$\mathrm{V}_{\text {IN }}$ Peak-to-Peak Ripple $=2.78 \mathrm{~V}$

$V_{I N}=10 \mathrm{~V}, V_{\text {OUT }}=30 \mathrm{~V}, I_{\text {OUT }}=3 \mathrm{~A}$
W Input Filter: Stuff L2, L3 and $\mathrm{C}_{\text {IN2 }}$
$\mathrm{V}_{\text {IN }}$ Peak-to-Peak Ripple $=0.47 \mathrm{~V}$

Figure 5. Input Voltage Ripple Measured at $\mathrm{C}_{\mathrm{IN} 1}$ with 300 MHz BW Probe, with and without the Input Filter

DEMO MANUAL DC1477A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	1	CSS	CAP., X7R, 0.1 μ F, 25V, 10\%, 0603	AVX, 06033C104KAT4A
2	1	CIN1	CAP., ALUMINUM, 100 ${ }^{\text {F }}$, 20\%, 50V	SANY0, 50ME100WX+TS (now SUNCON 50ME100WX)
3	2	C03, C04	CAP., X7R, 10 ${ }^{\text {F }}$, 35V, 10\%, 1210	MURATA, GRM32ER7YA106KA12L
4	3	CIN2, CIN3, CIN4	CAP., X7R, 4.7 $\mu \mathrm{F}, 50 \mathrm{~V}, 10 \%$, 1206	Taiyo Yuden, UMK316BJ475KL-T
5	2	C05, C06	CAP., ALUMINUM, 100 ${ }^{\text {F }}$, 35V	SANYO, 35HVH100M (now SUNCON 35HVH100M)
6	1	L1	IND. POWER IND, 3.3 ${ }^{\text {H }}$	VISHAY, IHLP5050FDER3R3M01
7	1	R1	RES., CHIP, 100k, 1/16W, 5\%, 0603	VISHAY, CRCW0603100KJNEA
8	1	R5	RES., CHIP, 2.74k, 1/16W, 1\%, 0603	VISHAY, CRCW06032K74FKEA
9	1	R6	RES., CHIP, 4.64k, 1/16W, 1\%, 0603	VISHAY, CRCW06034K64FKEA
10	1	R7	RES., CHIP, 1.21k, 1/16W, 1\%, 0603	VISHAY, CRCW06031K21FKEA
11	2	RS1,RS2	RES., CHIP, 0.015 $1 / 2 \mathrm{~W}, 1 \%, 1206$	IRC, LRC-LRF1206-01-R015-F
12	1	U1	$\begin{aligned} & \text { I.C., LTM4609EV\#PBF, } \\ & 15 \mathrm{~mm} \times 15 \mathrm{~mm} \times 2.8 \mathrm{~mm} \text { LGA } \end{aligned}$	LINEAR TECH., LTM4609EV\#PBF

Additional Demo Board Circuit Components

1	0	CIN5, Csnb1, Csnb2 (OPT)	CAP., 1206	
2	0	C2, C4, C5, CP, CFF (OPT)	CAP., 0603	$50 \mathrm{ME} 100 \mathrm{WX}+$ TS
3	0	C01, CO2 (OPT)	CAP., SVP, 100 μ F, D3L	
4	0	C07 (OPT)	CAP., 1206, 35V	
5	0	C08 (OPT)	POSCAP, D3L	
6	2	D1, D2	ZENER DIODE,4.7V	Central Semi., CMDZ5230B-7-F
7	2	L2, L3	IND. POWER IND, 0.4 $4 \mathrm{H}, 1806$	Fair-Rite, 2518065007Y6
8	1	R2	RES., CHIP, 51k, $1 / 16 \mathrm{~W}, 5 \%, 0603$	VISHAY, CRCW060351KOJNEA
9	1	R8	RES., CHIP, 20k, $1 / 16 \mathrm{~W}, 1 \%, 0603$	VISHAY, CRCW060320KOFKEA
10	0	RS3, Rsnb1, Rsnb2 (OPT)	RES.,1206	
11	0	R9, RUVLO (OPT)	RES., 0603	

Hardware: For Demo Board Only

1	2	JP1, JP2	2MM SINGLE ROW HEADER, 3-PIN	SAMTEC, TMM-103-02-L-S
2	2	JP3, JP4	2MM SINGLE ROW HEADER, 4-PIN	SAMTEC, TMM-104-02-L-S
3	4	JP1, JP2, JP3, JP4	SHUNT	SAMTEC, 2SN-BK-G
4	10	TP1, TP4, TP5, TP7, TP9, TP11-TP15	TESTPOINT, TURRET, 0.095"	MILL-MAX, 2501-2-00-80-00-00-07-0
5	4	TP2, TP3, TP8, TP10	BANANA JACK,	KEYSTONE, 575-4
6	4	STAND OFF	STAND-OFF, NYLON 0.50" TALL	KEYSTONE, 8833 (SNAP 0N)

SCHEMATIC DIAGRAM

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

DEMO MANUAL DC1477A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).
No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.
This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

