180° ANALOG PHASE SHIFTER, 2-20 GHz

Typical Applications

The HMC935LP5E is ideal for:

- EW Receivers
- Military Radar
- Test Equipment
- Satellite Communications
- Beam Forming Modules

Functional Diagram

Features

Wide Bandwidth: 2-20 GHz
180° Phase Shift
Low Insertion Loss: 4 dB
Low Phase Error: +20/-8 deg Typ.
Single Positive Voltage Control
32 Lead $5 \times 5 \mathrm{~mm}$ QFN Package: $25 \mathrm{~mm}^{2}$

General Description

The HMC935LP5E is an Analog Phase Shifter which is controlled via an analog control voltage from 0.5 to +11 V . The HMC935LP5E provides a continuously variable phase shift of 0 to 180 degrees from 2 to 20 GHz , with extremely consistent low insertion loss versus phase shift and frequency. The high accuracy HMC935LP5E is monotonic with respect to control voltage and features a typical low phase error of $+20 /-8$ degrees. The HMC935LP5E is housed in an RoHS compliant $5 \times 5 \mathrm{~mm}$ QFN leadless package.

Insertion Loss vs. Frequency

Phase Shift vs. Vctl

Phase Shift vs. Frequency
(Relative to Vctl $=0.5 \mathrm{~V}$) Vctl $=0.5$ to 11V

Insertion Loss vs. Vctl , F = 11 GHz

Phase Shift vs. Frequency @ Vctl = 6V
(Relative to Vctl $=0.5 \mathrm{~V}$)

Phase Error vs.
Frequency, Fmean $=11$ GHz ${ }^{[1]}$

180 ANALOG PHASE SHIFTER, 2-20 GHz

Second Harmonics vs. Vctl, F = 11 GHz

Insertion Loss vs. Pin @ 2 GHz

Insertion Loss vs. Pin @ 20 GHz

Input IP3 vs. Vctl, F = 11 GHz

Insertion Loss vs. Pin @ 11 GHz

Phase Shift vs. Pin @ 2 GHz

180º ANALOG PHASE SHIFTER, 2-20 GHz

Phase Shift vs. Pin @ 11 GHz

Input Return Loss vs.
Frequency, Vctl $=0.5$ to +11 V

Absolute Maximum Ratings

Frequency Control Voltage (Vfctl)	-0.5 to +15 V
RF Input Power	26 dBm
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
ESD Sensitivity (HBM)	Class 1 B

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Phase Shift vs. Pin @ 20 GHz

Output Return Loss vs.
Frequency, Vctl $=0.5$ to +11 V

Reliability Information

Junction Temperature To Maintain 1 Million Hour MTTF	$150^{\circ} \mathrm{C}$
Nominal Junction Temperature $\left(\mathrm{T}=85^{\circ} \mathrm{C}\right.$ and Pin $\left.=10 \mathrm{dBm}\right)$	$87^{\circ} \mathrm{C}$
Thermal Resistance (Junction To Ground Paddle)	$67^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature	-40 to $+85^{\circ} \mathrm{C}$

Frequency, Vctl $=0.5$ to +11 V
v00.0211

Outline Drawing

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ${ }^{[1]}$
HMC935LP5E	RoHS-Compliant Low Stress Injection Molded Plastic	100% Matte Sn	MSL1 ${ }^{[2]}$	$\underline{\text { H935 }}$

[1] 4-Digit lot number XXXX
[2] Max peak reflow temperature of $260^{\circ} \mathrm{C}$

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
$\begin{gathered} 1-4,7-13 \\ 15-18,21-32 \end{gathered}$	N/C	No connection required. These pins may be connected to RF/DC ground without affecting performance.	
5,20	GND	Ground: Backside of package has exposed metal ground slug that must be connected to ground thru a short path. Vias under the device are required.	
6	RFIN	This pin is AC coupled and matched to 50 Ohms.	
19	RFOUT	This pin is AC coupled and matched to 50 Ohms.	
14	Vctl	Phase shift control pin. Application of a voltage between 0.5 and 11 volts causes the transmission phase to change. The DC equivalent circuit is a series connected diode and resistor.	

For price, delivery, and to place orders: Analog Devices, Inc.,
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D

Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB
[2] Circuit Board Material: Rogers 4350 or Arlon 25 FR

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation board should be mounted to an appropriate heat sink. The evaluation circuit board shown is available from Hittite upon request.

