Is Now Part of

ON Semiconductor ${ }^{\circledR}$

To learn more about ON Semiconductor, please visit our website at www.onsemi.com

[^0]
FSUSB104 - Low-Power, Two-Port, Hi-Speed, USB2.0 (480 Mbps) Switch

Features

- Low On Capacitance: 3.7 pF Typical
- Low On Resistance: 3.9Ω Typical
- Low Power Consumption: $1 \mu \mathrm{~A}$ Maximum
- $15 \mu \mathrm{~A}$ Maximum $\mathrm{I}_{\text {CCT }}$ over an Expanded Voltage

Range ($\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.3 \mathrm{~V}$)

- Wide -3 db Bandwidth: $>720 \mathrm{MHz}$
- Packaged in Pb-free 10-Lead UMLP (1.4 x 1.8 mm)
- 8 kV ESD Rating, >16 kV Power/GND ESD Rating
- Power-Off Protection on All Ports When V $\mathrm{Cc}=0 \mathrm{~V}$
- D+/D- Pins Tolerate up to 5.25 V

Applications

- Cell phone, PDA, Digital Camera, and Notebook
- LCD Monitor, TV, and Set-Top Box

Description

The FSUSB104 is a bi-directional, low-power, two-port, Hi-Speed, USB2.0 switch. Configured as a double-pole, double-throw switch (DPDT) switch, it is optimized for switching between two Hi -Speed (480 Mbps) sources or a Hi-Speed and Full-Speed (12 Mbps) source.
The FSUSB104 is compatible with the requirements of USB2.0 and features an extremely low on capacitance (C_{on}) of 3.7 pF . The wide bandwidth of this device (720 MHz) exceeds the bandwidth needed to pass the third harmonic, resulting in signals with minimum edge and phase distortion. Superior channel-to-channel crosstalk also minimizes interference.

The FSUSB104 contains special circuitry on the switch I/O pins for applications where the V_{cc} supply is powered-off $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$, which allows the device to withstand an over-voltage condition. This device is designed to minimize current consumption even when the control voltage applied to the SEL pin is lower than the supply voltage (V_{Cc}). This feature is especially valuable to ultra-portable applications, such as cell phones, allowing for direct interface with the generalpurpose l/Os of the baseband processor. Other applications include switching and connector sharing in portable cell phones, PDAs, digital cameras, printers, and notebook computers.

Ordering Information

Part Number	Top Mark	Operating Temperature Range	Package
FSUSB104UMX	JF	-40 to $+85^{\circ} \mathrm{C}$	$10-$ Lead, Quad, Ultrathin Molded Leadless Package (UMLP), $1.4 \times 1.8 \mathrm{~mm}$

Figure 1. Analog Symbol

Pin Assignments

Figure 2. Pin Assignment (Top Through View)

Pin Definitions

Pin \#	Name	
1	D+	USB Data Bus
2	D-	USB Data Bus
3	GND	Ground
4	HSD2-	Multiplexed Source Inputs
5	HSD2 +	Multiplexed Source Inputs
6	HSD1-	Multiplexed Source Inputs
7	HSD1+	Multiplexed Source Inputs
8	IOE	Switch Enable
9	VCc	Supply Voltage
10	Sel	Switch Select

Truth Table

Sel	IOE	Function
X	HIGH	Disconnect
LOW	LOW	D+, D-=HSD1+, HSD1-
HIGH	LOW	D+, D-=HSD2+, HSD2-

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
$\mathrm{V}_{\text {cc }}$	Supply Voltage		-0.5	5.6	V
$\mathrm{V}_{\text {CNTRL }}$	DC Input Voltage (S, /OE) ${ }^{(1)}$		-0.5	$\mathrm{V}_{\text {cc }}$	V
$\mathrm{V}_{\text {SW }}$	DC Switch I/O Voltage ${ }^{(1)}$		-0.5	5.25	V
$\mathrm{I}_{\text {IK }}$	DC Input Diode Current		-50		mA
lout	DC Output Current			50	mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature		-65	+150	${ }^{\circ} \mathrm{C}$
ESD	Human Body Model, JEDEC: JESD22-A114	All Pins		7	kV
		I/O to GND		8	
		Power to GND		16	
	Charged Device Model, JEDEC: JESD22-C101			2	

Note:

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V_{CC}	Supply Voltage	3.0	4.4	V
$\mathrm{~V}_{\mathrm{CNTRL}}$	Control Input Voltage $(\mathrm{S}, / \mathrm{OE})^{(2)}$	0	$\mathrm{~V}_{\mathrm{CC}}$	V
V_{SW}	Switch I/O Voltage	-0.5	4.5	V
$\mathrm{~T}_{\mathrm{A}}$	Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$

Note:

2. The control input must be held HIGH or LOW and it must not float.

DC Electrical Characteristics

All typical values are at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to +85${ }^{\circ} \mathrm{C}$			Units
				Min.	Typ.	Max.	
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	$\mathrm{l}_{1 \times}=-18 \mathrm{~mA}$	3.0			-1.2	V
V_{IH}	Input Voltage High		3.0 to 3.6	1.3			V
			4.3	1.7			V
VIL	Input Voltage Low		3.0 to 3.6			0.5	V
			4.3			0.7	V
I_{N}	Control Input Leakage	$\mathrm{V}_{\text {sw }}=0$ to V_{Cc}	4.3	-1		1	$\mu \mathrm{A}$
loz	Off State Leakage	$\begin{aligned} & 0 \leq \text { Dn, HSD1n, HSD2n } \\ & \leq 3.6 \mathrm{~V} \end{aligned}$	4.3	-2		2	$\mu \mathrm{A}$
loff	Power-Off Leakage Current (All I/O Ports)	$\mathrm{V}_{\mathrm{sw}}=0 \mathrm{~V} \text { to } 4.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{cc}}=0 \mathrm{~V}$ Figure 4	0	-2		2	$\mu \mathrm{A}$
Ron	HS Switch On Resistance ${ }^{(3)}$	$\mathrm{V}_{\mathrm{SW}}=0.4 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}=-8 \mathrm{~mA}$ Figure 3,	3.0		3.9	6.5	Ω
$\Delta \mathrm{RoN}$	HS Delta Ron ${ }^{(4)}$	$\mathrm{V}_{\mathrm{SW}}=0.4 \mathrm{~V}$, $\mathrm{I}_{\mathrm{ON}=-8 \mathrm{~mA}}$	3.0		0.65		Ω
Icc	Quiescent Supply Current	$\mathrm{V}_{\text {CNTRL }}=0$ or $\mathrm{V}_{\text {CC }}$, lout $=0$	4.3			1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {cct }}$	Increase in Icc Current per Control Voltage and Vcc	$\mathrm{V}_{\text {CNTRL }}=2.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=4.3 \mathrm{~V}$	4.3			10.0	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {CNTRL }}=1.8 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=4.3 \mathrm{~V}$	4.3			15.0	$\mu \mathrm{A}$

Notes:

3. Measured by the voltage drop between HSDn and Dn pins at the indicated current through the switch.

On resistance is determined by the lower of the voltage on the two (HSDn or Dn ports).
4. Guaranteed by characterization. Not tested in production.

AC Electrical Characteristics

All typical value are for $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ at $25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	Conditions	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	$\mathrm{T}_{\mathrm{A}}=-40{ }^{\circ} \mathrm{C}$ to +85${ }^{\circ} \mathrm{C}$			Units
				Min.	Typ.	Max.	
ton	Turn-On Time S, /OE to Output	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{SW}}=0.8 \mathrm{~V} \\ & \text { Figure 5, Figure } 6 \end{aligned}$	3.0 to 3.6		13	30	ns
toff	Turn-Off Time S, /OE to Output	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{Sw}}=0.8 \mathrm{~V} \\ & \text { Figure 5, Figure } 6 \end{aligned}$	3.0 to 3.6		12	25	ns
tPD	Propagation Delay ${ }^{(5)}$	$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega$ $\text { Figure 5, Figure } 7$	3.3		0.25		ns
$t_{\text {BbM }}$	Break-Before-Make	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{SW}}=\mathrm{V}_{\mathrm{SW}}=0.8 \mathrm{~V} \\ & \text { Figure } 9 \end{aligned}$	3.0 to 3.6	2.0		6.5	ns
OIRR	Off Isolation	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=240 \mathrm{MHz}$ $\text { Figure } 11$	3.0 to 3.6		-30		dB
Xtalk	Non-Adjacent Channel Crosstalk	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=240 \mathrm{MHz}$ Figure 12	3.0 to 3.6		-45		dB
BW	-3db Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=0 \mathrm{pF}$ Figure 10	3.0 to 3.6		720		MHz
		$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ Figure 10			550		MHz

Note:

5. Guaranteed by characterization. Not tested in production.

USB Hi-Speed-Related AC Electrical Characteristics

Symbol	Parameter	Conditions	Vcc (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to +85${ }^{\circ} \mathrm{C}$			Units
				Min.	Typ.	Max.	
$\mathrm{tsk}_{\text {(}}$)	Skew of Opposite Transitions of the Same Output ${ }^{(6)}$	$C_{L}=5 \mathrm{pF}, R_{\mathrm{L}}=50 \Omega$ Figure 8	3.0 to 3.6		20		ps
t_{J}	Total Jitter ${ }^{(6)}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pf}, \\ & \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=500 \mathrm{ps}(10-90 \%) \text { at } \\ & 480 \mathrm{Mbps} \\ & {\text { (PRBS } \left.=2^{15}-1\right)} \end{aligned}$	3.0 to 3.6		200		ps

Note:

6. Guaranteed by characterization. Not tested in production.

Capacitance

Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to +85${ }^{\circ} \mathrm{C}$			Units
			Min.	Typ.	Max.	
$\mathrm{C}_{\text {IN }}$	Control Pin Input Capacitance	$\mathrm{V}_{\mathrm{cc}}=0 \mathrm{~V}$		1.5		pF
Con	D+/D- On Capacitance	$\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V}, / \mathrm{OE}=0 \mathrm{~V}, \mathrm{f}=240 \mathrm{MHz}$ Figure 14		3.7		
Coff	D1n, D2n Off Capacitance	V_{Cc} and /OE=3.3 V See Figure 13		2.0		

Test Diagrams

Figure 3. On Resistance

R_{L}, R_{S}, and C_{L} are functions of the application environment (see AC Tables for specific values) C_{L} includes test fixture and stray capacitance.

Figure 5. AC Test Circuit Load

Figure 7. Propagation Delay ($\left.\mathrm{t}_{\mathrm{R}} \mathrm{t}_{\mathrm{F}}-500 \mathrm{ps}\right)$

**Each switch port is tested separately

Figure 4. Off Leakage

Figure 6. Turn-On / Turn-Off Waveforms

Figure 8. Intra-Pair Skew Test $\mathrm{t}_{\mathbf{S K}(\mathrm{P})}$

Test Diagrams (Continued)

R_{L}, R_{S}, and C_{L} are functions of the application environment (see AC Tables for specific values) C_{L} includes test fixture and stray capacitance.
Figure 9. Break-Before-Make Interval Timing

environment (see AC Tables for specific values).
Figure 10. Bandwidth

Off isolation $=20$ Log $\left(\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}\right)$

Figure 11. Channel Off Isolation

Figure 12. Non-Adjacent Channel-to-Channel Crosstalk

Figure 13. Channel Off Capacitance

Figure 14. Channel On Capacitance

Abstract

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]:

 is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

