

Epson / E Ink EPD Controller

S4E5B001B000A00 EPD Controller Module

NOTICE

No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright infringement of a third party. When exporting the products or technology described in this material, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You are requested not to use, to resell, to export and/or to otherwise dispose of the products (and any technical information furnished, if any) for the development and/or manufacture of weapon of mass destruction or for other military purposes.

All brands or product names mentioned herein are trademarks and/or registered trademarks of their respective companies.

©SEIKO EPSON CORPORATION 2012 - 2013, All rights reserved.

Table Of Contents

Chapter	1 Introduction
1.1	Scope
1.2	Overview Description
Chapter	2 Features
2.1	Direct Source and Gate Driver for Electrophoretic Display
2.2	8/16-Bit and Serial Host Interface
2.3	Advanced Sequencer Engine
2.4	Memory
2.5	Image Buffer Flexibility
2.6	Picture-In-Picture
2.7	Cursor Buffer Support
2.8	Thermal Sensor
2.9	Four Regulated Output Voltages for Source- and Gate-Driver Power Supplies 10
2.10	VCOM Power Supply
2.11	Controlled Inrush Current During Soft Start
2.12	Clock Source
Chapter	3 Typical System Implementation
Chapter	4 Pins
4.1	Pinout Diagram
4.2	Pin Descriptions
4	.2.1 Shared Host Interface
4	.2.2 Host Interface
4	.2.3 Gate Driver Interface
4	.2.4 Source Driver Interface
4	.2.5 Miscellaneous
4	.2.6 Power and Ground
4.3	Configuration Pins
4.4	Pin Mapping
4	.4.1 Host Interface Modes
Chapter	5 D.C. Characteristics
5.1	Absolute Maximum Ratings
5.2	Recommended Operating Conditions
5.3	Electrical Characteristics
Chapter	6 A.C. Timings
6.1	Power-On Sequence
6.2	RESET_L Timing

6.3	Host Interface Timing	
6.	3.1 Intel 80 Host Interface Timing	
6.	3.2 Serial Host Interface Timing	
Chapter 3	7 Power Management	
7.1	Power Management State Description	
Chapter a	8 Host Interface	
8.1	Host Cycle Sequences	
8.	1.1 Command and Parameter Cycle	
8.	1.2 Memory Access Combination Cycle	
8.2	HRDY (Wait Line) Usage	
8.3	Intel 80 16-Bit Host Operations	
8.4	Intel 80 8-Bit Host Operations	
8.5	Serial Host Operations	
8.:	5.1 Protocol Timing	
8.:	5.2 Command Transfers	
8.6	Command List	
8.7	Host Interface Command Descriptions	
8.2	7.1 INIT_PLL $(0x01 + 3 \text{ parameters})$	
8.2	7.2 RUN_SYS $(0x02 + 0 \text{ parameters}) \dots \dots$	
8.′	7.3 STBY $(0x04 + 0 \text{ parameters})$	
8.2	7.4 SLP $(0x05 + 0 \text{ parameters})$	
8.2	7.5 INIT_SYS_RUN $(0x06 + 0 \text{ parameters})$	
8.′	7.6 INIT_ROTMODE $(0x0B + 1 \text{ parameter})$	
8.2	7.7 RD_REG $(0x10 + 2 \text{ parameters})$	
8.2	7.8 WR_REG $(0x11 + 2 \text{ parameters})$	
8.2	7.9 PIP_DISABLE $(0x14 + 0 \text{ parameters})$	
8.2	7.10 PIP_ENABLE $(0x15 + 4 \text{ parameters}) \dots$	
8.2	7.11 PIP_ADRCFG $(0x16 + 2 \text{ parameters}) \dots$	
8.2	7.12 PIP_XYSETUP $(0x17 + 2 \text{ parameters})$	
	7.13 CSR_MAINCFG $(0x18 + 4 \text{ parameter})$	
8.2	7.14 CSR_XYSETUP $(0x19 + 2 \text{ parameters})$	
8.2	7.15 CSR_ADRCFG $(0x1A + 1 \text{ parameters})$	
8.7	7.16 BST_RD_SDR $(0x1C + 4 \text{ parameters})$	
8.7	7.17 BST_WR_SDR $(0x1D + 4 \text{ parameters})$	
8.2	7.18 BST_END_SDR $(0x1E + 0 \text{ parameters})$	
8.7	7.19 LD_IMG $(0x20 + 1 \text{ parameter})$	
8.2	7.20 LD_IMG_AREA $(0x22 + 5 \text{ parameters})$	
	7.21 LD_IMG_END $(0x23 + 0 \text{ parameters})$	
8.	7.22 LD_IMG_SETADR (0x25 + 2 parameters).	

8.7.23 LD_IMG_DSPEADR $(0x26 + 0 \text{ parameters})$	60
8.7.24 WAIT_DSPE_TRG (0x28 + 0 parameters)	60
8.7.25 WAIT_DSPE_FREND (0x29 + 0 parameters)	60
8.7.26 WAIT_DSPE_LUTFREE (0x2A + 0 parameters)	60
8.7.27 RD_WFM_INFO (0x30 + 2 parameters)	61
8.7.28 UPD_INIT $(0x32 + 0 \text{ parameters})$	61
8.7.29 UPD_FULL (0x33 + 1 parameter)	62
8.7.30 UPD_FULL_AREA (0x34 + 5 parameters)	62
8.7.31 UPD_PART (0x35 + 1 parameter)	64
8.7.32 UPD_PART_AREA (0x36 + 5 parameters)	65
8.7.33 UPD_SET_IMGADR (0x38 + 2 parameters)	67
Chapter 9 Display Memory Configurations	68
9.1 Introduction	68
9.2 Image Buffer Memory Area Setup	69
9.2.1 Image Buffer Storage	70
9.3 PIP Image Buffer Memory Area Setup	71
9.3.1 PIP Image Buffer Storage	72
9.4 Panel Update Buffer Memory Area Setup	72
9.4.1 Panel Update Buffer Usage	73
9.5 Rotation Support	74
9.5.1 Rotation Introduction	74
9.5.2 90° Rotation \ldots	75
9.5.3 180° Rotation	76
9.5.4 270° Rotation	77
9.6 Window Area Position / Rotation	78
9.6.1 90° Rotation	78
9.6.2 180° Rotation	79
9.6.3 270° Rotation	80
9.7 PIP Relative to Panel Rotation	81
9.7.1 90° Rotation	81
9.7.2 180° Rotation	82
9.7.3 270° Rotation	83
9.8 Cursor Relative to Panel Rotation	84
9.8.1 90° Rotation	84
9.8.2 180° Rotation	85
9.8.3 270° Rotation	86
9.8.4 Cursor Rotation Example	87
Chapter 10 Host Memory Transfer Format	88
10.1 Host Interface Memory Transfer Mode	88

10.2 Host Interface Packed Pixel Data Transfer Format Endian Formatting
10.2.1 Packed Pixel Area Size Transfer Example
Chapter 11 Display Operations
11.1 Display Update: Multi-Region Pipeline Usage
11.1.1 User Interface Applications with Multi-Region Pipeline
11.1.2 Display Update Commands
11.1.3 Pipeline Usage
11.2 Guaranteed Display Update Operation Flow
11.3 Overlapping Display Update Operation Flow
11.3.1 Overlapping Display Updates
11.3.2 Overlapping Display Update Recommended Programming Flow
11.4 Multi-layer Image Buffer Support
11.5 PIP Window Support
11.5.1 PIP Window Implementation
11.6 Cursor Window Support
11.6.1 Cursor Window Implementation
Chapter 12 Firmware Programming Guide
12.1 Command Based Programming
12.1.1 Power On Initialize
12.1.2 Standby Mode
12.1.3 Sleep Mode
12.1.4 Run Mode
12.1.5 Host Packed Pixel Write - to Main or PIP with Transparency
12.1.6 Host Area Defined Packed Pixel Write - to Main or PIP
12.1.7 Manual Trigger to Thermal Sensor for Single Temperature Read
12.1.8 Full Image Buffer Dump
12.1.9 Display Engine - Panel Update Buffer Initialize with Image Buffer
12.1.10 Display Engine - Full Display Update - Full Image Size Sweep
12.1.11 Display Engine - Full Display Update - User Defined Area Sweep
12.1.12 Display Engine - Partial Display Update - Full Image Size Sweep
12.1.13 Display Engine - Partial Display Update - User Defined Area Sweep
12.1.14 Display Engine - Picture-In-Picture Setup
12.1.15 Display Engine - Picture-In-Picture Position Change
12.1.16 Display Engine - Cursor Setup
12.1.17 Display Engine - Cursor Position Change
Chapter 13 Auto Waveform
13.1 Introduction
13.2 Waveform Modes
Chapter 14 Timing Requirements

14.1 Timing Requirements For Reset .									
14.2 Timing Requirements for Initialization or Exiting from Sleep Mode									
Chapter 15 Mechanical Data									
Chapter 16 Soldering, Handling and Storage Recommendations									
16.1 Recommended Reflow Profile									
16.1.1 Repeat Reflow Soldering									
16.1.2 Baking Conditions									
16.1.3 Hand Soldering									
16.1.4 Pb-Free Soldering Paste									
16.1.5 Cleaning									
16.1.6 Visual Inspection									
16.1.7 Rework									
16.2 Handling and Storage									
16.2.1 Handling									
16.2.2 Storage									
Chapter 17 References									
Appendix A Registers									
A.1 Register Access									
A.1.1 Register Access using Command Interface									
A.2 Register Set									
A.3 Register Descriptions									

Chapter 1 Introduction

1.1 Scope

This is the Hardware Functional Specification for the S4E5B001B00A00 EPD Controller Module. Included in this document are timing diagrams, AC and DC characteristics, Command descriptions, and power management descriptions. This document is intended for initial system designer references only.

This document is updated as appropriate. Please check for the latest revision of this document before beginning any development. We appreciate your comments on our documentation. Please contact us via email at documentation@erd.epson.com.

1.2 Overview Description

EPSON's S4E5B001B000A00 EPD Controller Module is a complete, high performance, easy to use solution for E Ink EPDs (Electronic Paper Displays). The module includes all necessary digital and analog power circuitry for driving an E Ink panel. The EPD Controller Module consists of Epson's S1D13522 EPD controller, an on-board 26MHz crystal clock source, an 8 Mbit flash memory for command/waveform storage, and a Power Management IC (PMIC) with built in temperature sensor.

The S4E5B001B000A00 EPD Controller Module contains all the complex electronics needed to drive an EPD panel. With this module a customer can build a EPD system on a simple two layer PCB. This module removes the complexity of board design from the customer, making a variety of implementations possible.

The S4E5B001B000A00 EPD Controller Module is the ideal choice for new EPD designs and design upgrades.

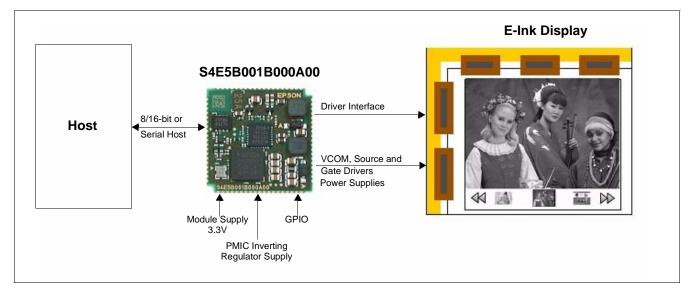


Figure 1-1: S4E5B001B00A00 Overview

Chapter 2 Features

2.1 Direct Source and Gate Driver for Electrophoretic Display

- Up to 4-bit grayscale waveforms (16 level grey-shades)
- Source Driver interfaces to the Micronix MX860 IC and compatible devices
- Gate Driver interfaces to the Sharp LH1692 and compatible devices
- 15-Region Pipeline Technology
 - Auto Pipeline Management for easy implementation
- Auto Waveform Management
 - Automatically determines the best/fastest waveforms based on the display contents
 - Supports Monochrome, 4 level grayscale, 8 level grayscale, 16 level grayscale and one default waveform

2.2 8/16-Bit and Serial Host Interface

- Indirect 8/16-bit Host Bus Interface (Intel 80)
- Serial Host Interface (SPI)
- Registers can be accessed using Command Mode
- DMA compatible memory bus style host interface
- Transparency write support

2.3 Advanced Sequencer Engine

• Sequencer logic executes pre-programmed series of commands request from host.

2.4 Memory

- 2M Bytes of stacked memory
- Sufficient Storage for:

		Panel Size	Memory Storage Configuration	
	6" (800x600)	8" (1024x768)	9" (1200x825)	Memory Storage Configuration
Main Display Up to 5 pages Up to 2 pages			1 page	4bpp packed
Full PIP Size Up to 4 pages Up to 1.3 pages		0	1bpp, 2bpp and 4bpp packed (selectable)	
Cursor 4KB available 4KB available 4KB avail		4KB available	1bpp, 2bpp and 4bpp packed (selectable)	
Max Framerate	85Hz	85Hz	50Hz	

2.5 Image Buffer Flexibility

- Host Writes can be rotated counter-clockwise by 90°, 180° or 270°
- New image data can be loaded to the image buffer while display updates are in progress
- Supported Data Formats: 1bpp, 2bpp, 4bpp and 1 byte-per-pixel

2.6 Picture-In-Picture

- Picture in Picture support on separate buffer
 - Independently Programmable Bit-Per-Pixel 1bpp, 2bpp and 4bpp
 - Programmable Look-up-table availability for 1bpp and 2bpp for display bit-per-pixel matching
 - Transparency key pixel value support.
 - Background pixel inversion support.

2.7 Cursor Buffer Support

- Cursor buffer storage in internal memory.
 - Dedicated 4K bytes of cursor buffer storage (in internal memory) independently programmable bit-per-pixel (1bpp, 2bpp or 4bpp)
 - Extra memory for Multi-Buffered Cursor support.
 - Transparency key pixel value support.
 - Background pixel inversion support.

2.8 Thermal Sensor

• Power Management IC (PMIC) on-chip Thermal Sensor provides automatic temperature compensation.

2.9 Four Regulated Output Voltages for Source- and Gate-Driver Power Supplies

- Two source-driver power supplies can deliver up to 200mA.
- Positive source-driver power supply regulation voltage (VPOS) of +15V.
- Negative source-driver supply voltage (VNEG) tightly regulated to VPOS within ±50mV.
- Two gate-driver power supplies can deliver up to 20mA.
- +22V positive gate-driver power supply (GVDD) and -20V negative gate-driver power supply (GVEE).

2.10 VCOM Power Supply

- Negative output VCOM voltage programmable from -0.5V to -3.05V in 10mV steps.
- Non-volatile memory for storing programmed VCOM voltage, automatically loaded at power-up.

2.11 Controlled Inrush Current During Soft Start

• All outputs are brought up with soft-start control to limit the inrush current.

2.12 Clock Source

• No external clock source required.

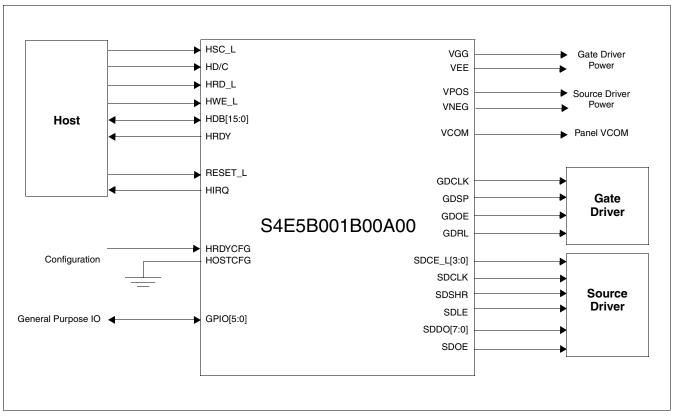


Figure 3-1: Typical 16-Bit Parallel Host Interface System Implementation

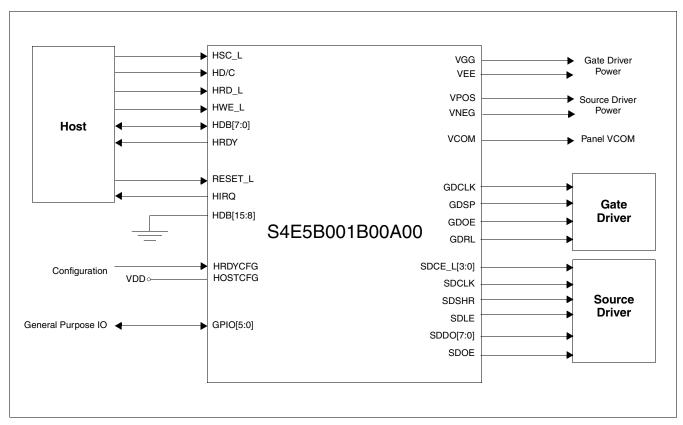


Figure 3-2: Typical 8-Bit Parallel Host Interface System Implementation

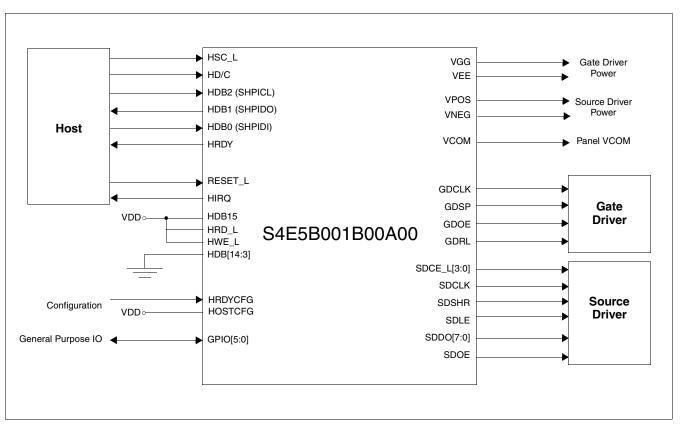


Figure 3-3: Typical Serial (SPI) Host Interface System Implementation

Chapter 4 Pins

4.1 Pinout Diagram

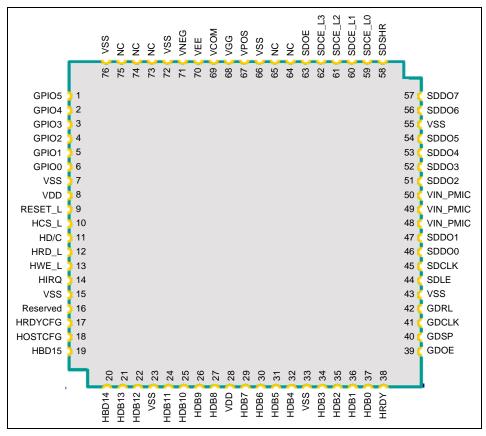


Figure 4-1: Pin Mapping (Top View)

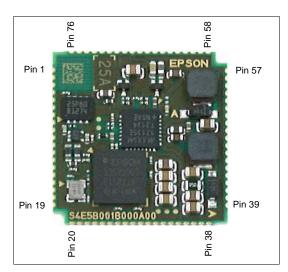


Figure 4-2: Pin Position Identification

4.2 Pin Descriptions

Key:

Pin Types		
I	=	Input
0	=	Output
IO	=	Bi-Directional (Input/Output)
Р	=	Power pin

RESET# States

Н	=	High level output
L	=	Low level output
Z	=	High Impedance (Hi-Z)
1	=	Pull-up resistor on input
0	=	Pull-down resistor on input

Table 4-1: Cell Descriptions

Item	Description
IC	High voltage LVCMOS input buffer
ICS	High voltage LVCMOS Schmitt input buffer
ICD2	High voltage LVCMOS input buffer with pull-down (100k Ω @3.3V)
0	High voltage low noise output buffer (4mA@3.3V)
O4	High voltage low noise output buffer (12mA@3.3V)
ОН	High voltage high speed output buffer (4mA@3.3V)
BC	High voltage LVCMOS low noise bi-directional buffer (4mA@3.3V)
BCS	High voltage LVCMOS schmitt low noise bi-directional buffer (4mA@3.3V)
BCD2	High voltage LVCMOS low noise bi-directional buffer (4mA@3.3V) with pull-down (100k Ω @3.3V)
ILTR	Low voltage transparent input buffer
OLTR	Low voltage transparent output buffer
ILTSD	Low voltage test mode control input buffer with pull-down

4.2.1 Shared Host Interface

Pin Name	Туре	Pin #	Cell	RESET_L State	Description
RESET_L	I	9	ICS	_	This active low input sets all internal registers to their default states and forces all signals to their inactive states. When unused, this pin should be connected to VDD. For RESET_L timing details, see 6.2, "RESET_L Timing" on page 23.
HIRQ	0	14	0	L	This output pin is the Host IRQ.

Table 4-2: Shared Host Interface Pin Descriptions

4.2.2 Host Interface

These pins are used for the Host interface which can be selected from Intel 80 16-bit, Intel 80 8-bit, or Serial Host based on the setting of the HOSTCFG pin and HDB15.

Pin Name	Туре	Pin #	Cell	RESET_L State	Description
HDB[15:0]	ю	19, 20, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37	BC	Z	 These input/output pins have multiple functions. For Intel 80 16-bit (HOSTCFG = 0), these pins are the shared command/parameter lines 15-0. For Intel 80 8-bit (HOSTCFG = 1 and HDB15 = 0), HDB[7:0] are the shared address/data lines 7-0. HDB[14:8] must be connected to VSS. For Serial Host (HOSTCFG = 1 and HDB15 = 1), HDB0 is the serial data input, SHPIDI. HDB1 is the serial data output, SHPIDO. HDB2 is the serial clock, SHPICK. HDB[14:3] must be connected to VSS.
HWE_L	I	13	ICS	_	 This active low input pin has multiple functions. For Intel 80 16-bit (HOSTCFG = 0), this pin is the Write Enable signal. For Intel 80 8-bit (HOSTCFG = 1 and HDB15 = 0), this pin is the Write Enable signal. For Serial Host (HOSTCFG = 1 and HDB15 = 1), this pin must be connected to VDD.
HRD_L	1	12	ICS	_	 This active low input pin has multiple functions. For Intel 80 16-bit (HOSTCFG = 0), this pin is the Read Enable signal. For Intel 80 8-bit (HOSTCFG = 1 and HDB15 = 0), this pin is the Read Enable signal. For Serial Host (HOSTCFG = 1 and HDB15 = 1), this pin must be connected to VDD.
HCS_L	Ι	10	IC		This active low input pin is the Chip Select signal.

Table 4-3: Host Interface Pin Descriptions

Pin Name	Туре	Pin #	Cell	RESET_L State	Description
HD/C	I	11	IC	_	This input pin selects between Command (0) and Parameter (1).
HRDY	Ю	38	BC	н	This active high pin is the Host interface Ready (or WAIT) signal. When not used, this pin should be left unconnected

Table 4-3: Host Interface Pin Descriptions (Continued)

4.2.3 Gate Driver Interface

These pins are for the Gate Driver interface.

Pin Name	Туре	Pin #	Cell	RESET_L State	Description
GDOE	0	39	0	L	This output pin is the output enable for the Gate Driver.
GDCLK	0	41	0	L	This output pin is the clock for the Gate Driver.
GDSP	0	40	0	Н	This output pin is the Gate Driver Start Pulse.
GDRL	0	42	0	L	This output pin is the Gate Driver Right or Left.

4.2.4 Source Driver Interface

These pins are for the Source Driver interface.

Table 4-5: Source Driver Interface Pin Descriptions

Pin Name	Туре	Pin #	Cell	RESET_L State	Description
SDCLK	0	45	O4	L	This output pin is the clock for the Source Driver.
SDLE	0	44	O4	L	This output pin is the latch enable for the Source Driver.
SDDO[7:0]	0	57, 56, 54, 53, 52, 51, 47, 46	O4	L	These are the data output pins for the Source Driver.
SDCE_L[3:0]	0	62, 61, 60, 59	O4	н	These output pins are the Source Driver Chip Enables 3-0.
SDSHR	0	58	O4	L	This output pin is the Source Driver Shift Right Enable.
SDOE	0	63	O4	L	This output pin is the output enable for the Source Driver.

4.2.5 Miscellaneous

Pin Name	Туре	Pin #	Cell	RESET_L State	Description
HRDYCFG	I	17	IC	_	This input pin is used for configuring the S4E5B001B00A00 and must be connected to either VDD or VSS. For a summary of configuration options, see 4.3, "Configuration Pins" on page 20.
HOSTCFG	I	18	IC	_	This input pin is used for configuring the S4E5B001B00A00 and must be connected to either VDD or VSS. For a summary of configuration options, see 4.3, "Configuration Pins" on page 20.
GPIO[5:0]	Ю	1, 2, 3, 4, 5, 6	BCD2	Z	These are the General Purpose Input/Output pins. When not used, these pins should be connected to VSS through a high value resistor (50k ~ 100k ohm).
Reserved	10	16		—	This reserved pin must be connected to VSS.
NC	_	64, 65, 73, 74, 75		—	These pins must be left unconnected.

Table 4-6: Miscellaneous Pin Descriptions

4.2.6 Power and Ground

Table 4-7:	Power	and Gro	und Pin	Descri	ptions
------------	-------	---------	---------	--------	--------

Pin Name	Туре	Pin#	Cell	Power	RESET_L State	Description
VDD	Р	8, 28	Р	+2.4V ~ +3.6V		Module main power supply
VIN_PMIC	Р	48, 49, 50	Р	+2.7V ~ +5.5V	_	PMIC inverting regulator power supply
VSS	Ρ	7, 15, 23, 33, 43, 55, 66, 72, 76	Р	οv	_	Ground

Pin Name	Туре	Pin#	Cell	Power	RESET_L State	Description
VGG	Р	68	Р	+22V		Gate-driver positive power supply
VEE	Р	70	Р	-20V		Gate-driver negative power supply
VPOS	Р	67	Р	+15V	_	Source-driver positive power supply
VNEG	Р	71	Р	-15V	_	Source-driver negative power supply
VCOM	Р	69	Р	-0.5V ~ -3.05V	_	Panel VCOM power supply

4.3 Configuration Pins

The S4E5B001B00A00 has 3 configuration pins which should be pulled high or low based on the following table.

CNF Pin	1 (Connected to VDD)	0 (Connected to VSS)
HRDYCFG	HRDY only driven when HCS_L is asserted	HRDY is always driven
HOSTCFG	Intel 80 8-bit or Serial Host selected (see Note)	Intel 80 16-bit Host is selected

Table 4-9: Configuration Pin Summary

Note

When HOSTCFG = 1, the HDB15 pin is used to select between the Intel 80 8-bit or Serial Host interfaces. For pin mapping details, see 4.4.1, "Host Interface Modes" on page 20.

4.4 Pin Mapping

4.4.1 Host Interface Modes

The Host interface can be configured to either Intel 80 16-bit, Intel 80 8-bit, or Serial Host based on the setting of the HOSTCFG pin and HDB15. The following table summarizes the Host Interface configurations.

Pin Name	HOSTCFG = 0	HOSTCFG = 1, HDB15 = 0	HOSTCFG = 1, HDB15 = 1	
Fin Name	16-bit Host	8-Bit Host	Serial Host	
HD/C	0 - Command 1 - Parameter	0 - Command 1 - Parameter	0 - Command 1 - Parameter	
HDB[7:0]	Shared Command/Parameter[7:0]	Shared Command/Parameter[7:0]	HDB[0] - SHPIDI HDB[1] - SHPIDO HDB[2] - SHPICK HDB[7:3] - Connect to VSS	
HDB[15:8]	Shared Command/Parameter[15:8]	Connect to VSS	HDB[15] -Connect to VDD HDB[14:8] - Connect to VSS	
HCS_L	Cycle Enable	Cycle Enable	SHPICS_L	
HRD_L	Read Enable	Read Enable	Connect to VDD	
HWE_L	Write Enable	Write Enable	Connect to VDD	
HRDY	Wait line	Wait line	Wait Line	

Table 4-10: Host Interface Selection

The 8-bit parallel host interface can access commands and write to memory, but memory cannot be read back.

Chapter 5 D.C. Characteristics

5.1 Absolute Maximum Ratings

Table 5-1: Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
VDD	Module Main Supply Voltage	VSS - 0.3 ~ 4.0	V
VIN_PMIC	PMIC Inverting Regulator Supply Voltage	VSS - 0.3 ~ 6.0	V
VIN	Input Signal Voltage	VSS - 0.3 ~ *VDD + 0.5	V
VOUT	Output Signal Voltage	VSS - 0.3 ~ *VDD + 0.5	V
IOUT	Output Signal Current	±10	mA
TSTG	Storage Temperature	-55 ~ 150	°C

Note

 $V_{SS} = 0 V$

5.2 Recommended Operating Conditions

Table 5-2: Recommended Operating Conditions

Symbol	Parameter	Condition	Min	Тур	Max	Units
VDD	Module Main Supply Voltage	VSS = 0 V	2.4	3.3	3.6	V
VIN_PMIC	PMIC Inverting Regulator Supply Voltage	VSS = 0 V	2.7	3.3	5.5	V
VIN	Input Signal Voltage	—	VSS	_	VDD	V
TOPR	Operating Temperature	—	-20	25	85	°C

5.3 Electrical Characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Units
ISLP_VIN_PMIC	Sleep mode current for VIN_PMIC	Sleep mode, no floating input for VDD	_	0.011	_	mA
ISLP_VDD	Sleep mode current for VDD	Sleep mode, no floating input	_	0.205	_	mA
IIZ	Input Leakage Current	—	-5	—	5	μΑ
IOZ	Output Leakage Current	—	-5	—	5	μΑ
IOH	High Level Output Current	VDD = min VOH = VDD - 0.4 V	-4	_	_	mA
IOH4	High Level Output Current	VDD = min VOH = VDD - 0.4 V	-12	_	_	mA
IOL	Low Level Output Current	VDD = min VOL = 0.4 V	4	_	_	mA
IOL4	Low Level Output Current	VDD = min VOL = 0.4 V	12	_	_	mA
VIH	High Level Input Voltage	LVCMOS Level VDD = max	2.2	_	VDD + 0.3	V
VIL	Low Level Input Voltage	LVCMOS Level VDD = min	-0.3	_	0.8	V
VPOS	VPOS Output Voltage	—	—	15	—	V
VNEG	VNEG Output Voltage	—	—	-15	—	V
VGG	VGG Output Voltage	—	—	22		V
VEE	VEE Output Voltage	—	—	-20		V
VCOM	VCOM Output Voltage	—	-3.05	-1.77	-0.5	V
IVPOS	VPOS Output Current	—	—	—	200	mA
IVNEG	VNEG Output Current	—		—	200	mA
IVGG	VGG Output Current	—	—	—	20	mA
IVEE	VEE Output Current	—	—	—	20	mA
IVCOM	VCOM Output Current	—	70	-	—	mA
RPU	Pull-Up Resistance	VIN = 0 V	50	100	240	kΩ
RPD	Pull-Down Resistance	VIN = VDD	50	100	240	kΩ
CI	Input Pin Capacitance	f = 1MHz, VDD = 0V	—	—	6	pF
СО	Output Pin Capacitance	f = 1MHz, VDD = 0V	—	—	6	pF
CIO	Bi-Directional Pin Capacitance	f = 1MHz, VDD = 0V	—	—	6	pF

Table 5-3: Electrical Characteristics

Chapter 6 A.C. Timings

6.1 Power-On Sequence

Figure 6-1: Power-On Sequence

Table 6-1: Power-On Sequence

Symbol	Parameter	Min	Max	Units
t1	RESET_L deasserted from VDD on	4		ms

6.2 RESET_L Timing

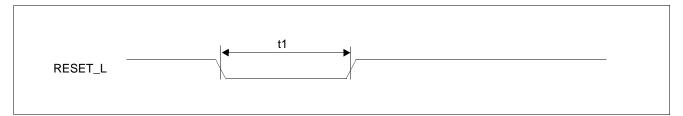


Figure 6-2: S4E5B001B00A00 RESET_L Timing

Symbol	Parameter	Min	Max	Units
t1	Active Reset Pulse Width	4		ms

6.3 Host Interface Timing

6.3.1 Intel 80 Host Interface Timing

The following section provides AC timing information for the Intel 80 16-bit Host interface, which is selected when HOSTCFG = 0, and Intel 80 8-bit Host interface, which is selected when HOSTCFG = 1 and HDB15 = 0.

For a detailed description of the Host Interface pins, see Chapter 4.2.2, "Host Interface" on page 17.

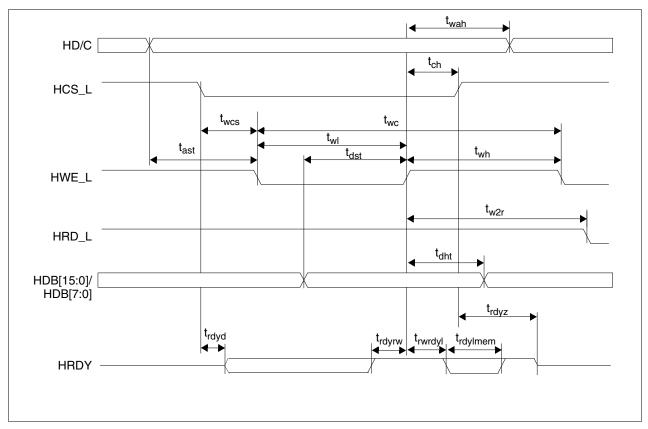


Figure 6-3: Intel 80 Host Interface Write Timing

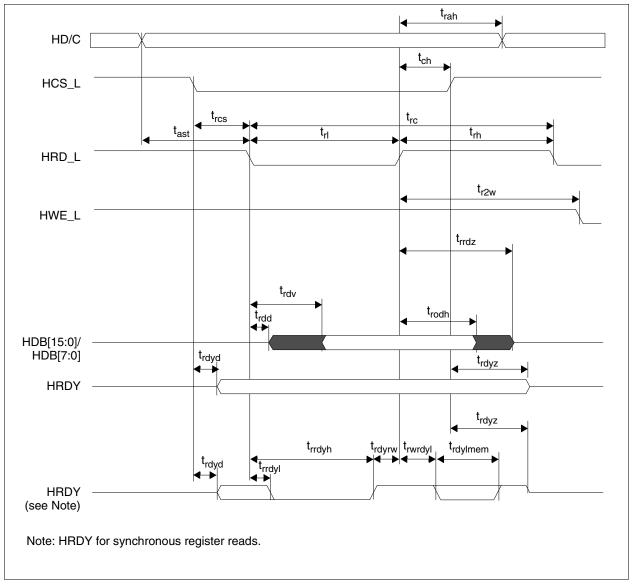


Figure 6-4: Intel 80 Host Interface Read Timing

Signal	Symbol	Parameter	Min	Мах	Units	Descriptio n
	t _{ast}	Address setup time (read/write)	0	—	ns	
HD/C	t _{wah}	Address hold time (write)	3.7	—	ns	
	t _{rah}	Address hold time (read)	2.9	_	ns	
	t _{wcs}	Chip Select setup time to HWE_L falling edge	1.8	_	ns	
HCS_L	t _{rcs}	Chip Select setup time to HRD_L falling edge	2.2	_	ns	
	t _{ch}	Chip Select hold time (read/write)	3.4	_	ns	
	t _{wl}	Pulse low duration	(Note 1)	t _{wc} - t _{wh}	ns	
	t _{wh}	Pulse high duration	(Note 1)	t _{wc} - t _{wl}	ns	
HWE_L		Write cycle for Registers	76.9	_	ns	
	t _{wc}	Write cycle for Memory	76.9		ns	
	t _{w2r}	HWE_L rising edge to HRD_L falling edge	30.76		ns	
	t _{r2w}	HRD_L rising edge to HWE_L falling edge	0	_	ns	
		Read cycle for Registers	76.9		ns	
ו ממוו	t _{rc}	Read cycle for Memory	76.9	_	ns	
HRD_L		Pulse low duration (for Registers)	61.52	t _{rc} - t _{rh}	ns	
	t _{rl}	Pulse low duration (for Memory)	(Note 1)	t _{rc} - t _{rh}	ns	
	t _{rh}	Pulse high duration	(Note 1)	t _{rc} - t _{rl}	ns	
	t _{dst}	Write data setup time (16-bit bus)	7.1	_	ns	
	t _{dst}	Write data setup time (8-bit bus)	1.7		ns	
	t _{dht}	Write data hold time (16-bit bus)	4.8	_	ns	
	t _{dht}	Write data hold time (8-bit bus)	4.7	_	ns	
	t _{rodh}	Read data hold time from HRD_L rising edge	3.2		ns	
	t _{rrdz}	HRD_L rising edge to HDB[15:0] Hi-Z (16-bit bus)	3.6	9.5	ns	
HDB[15:0]	t _{rrdz}	HRD_L rising edge to HDB[7:0] Hi-Z (8-bit bus)	3.9	9.6	ns	
	-	HRD_L falling edge to HDB[15:0]/HDB[7:0] valid for Registers	_	83.52	ns	
		HRD_L falling edge to HDB[15:0]/HDB[7:0] valid for Memory (if t _{rc} not met)	_	83.42	ns	– CL=30pF
	t _{rdd}	HRD_L falling edge to HDB[15:0] driven (16-bit bus)	4.4	17.0	ns	CL=30pF
	t _{rdd}	HRD_L falling edge to HDB[7:0] driven (8-bit bus)	3.5	7.1	ns	CL=30pF
	t _{rdyd}	HCS_L falling edge to HRDY driven (16-bit bus)	3.7	13.8	ns	CL=30pF
	t _{rdyd}	HCS_L falling edge to HRDY driven (8-bit bus)	3.8	11.5	ns	CL=30pF
	t _{rdyz}	HCS_L rising edge to HRDY Hi-Z (16-bit bus)	2.0	5.4	ns	CL=30pF
	t _{rdyz}	HCS_L rising edge to HRDY Hi-Z (8-bit bus)	2.4	5.5	ns	CL=30pF
	t _{rrdyl}	HRD_L falling edge to HRDY low	—	16.7	ns	CL=30pF
HRDY	t _{rrdyh}	HRD_L falling edge to HRDY high	—	85.12	ns	CL=30pF
	t _{rdyrw}	HRDY rising edge to HRD_L/HWE_L rising edge	146.4	—	ns	CL=30pF
	tauratul	HWE_L rising edge to HRDY falling edge (for command accesses)		16.4	ns	CL=30pF
	t _{rwrdyl}	HRD_L/HWE_L rising edge to HRDY falling edge (for memory accesses)	_	15.8	ns	CL=30pF
	t _{rrdylmem}	HRDY low period for memory read/write	—	61.52	ns	CL=30pF

<i>Table 6-3:</i>	Intel 80	Host	Interface	AC Timing
1000000	111101 00	11000	1	110 10000

1. The pulse width high and pulse width low parameters have no required minimum duration. However, a pulse must occur for the cycle to take place and must adhere to the formula as defined by the maximum value.

6.3.2 Serial Host Interface Timing

The following section provides AC timing information for the Serial Host interface which is selected when HOSTCFG = 1 and HDB15 = 1.

For a detailed description of the Host Interface pins, see Chapter 4.2.2, "Host Interface" on page 17.

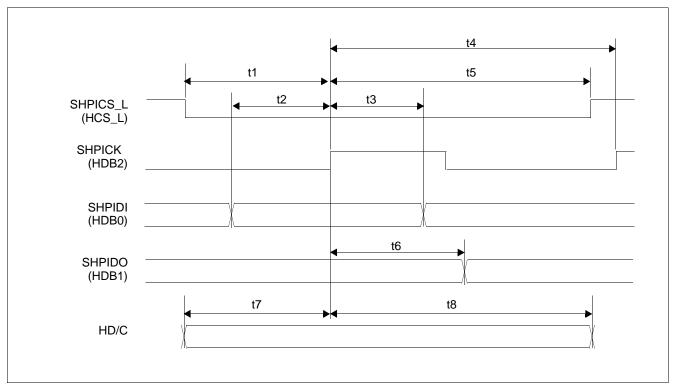


Figure 6-5: Serial Interface SHPICK Timing

Symbol	Parameter	Min	Max	Unit
t1	SHPICS_L active to positive edge of SHPICK	2		ns
t2	SHPIDI setup to positive edge of SHPICK	9		ns
t3	SHPIDI hold from positive edge of SHPICK	2	—	ns
t4	SHPICK period	18		ns
t5	Positive edge of SHPICK to SHPICS_L high	1		ns
t6	Positive edge of SHPICK to SHPIDO hold	3	16	ns
t7	HD/C setup to positive edge of SHPICK	3	—	ns
t8	HD/C hold from positive edge of SHPICK	1	—	ns

Table 6-4: Serial Interface SHPICK Timing

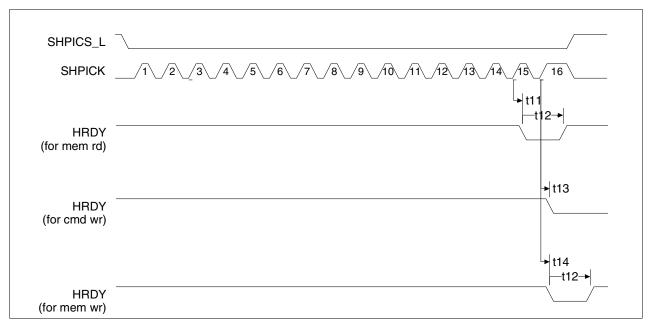


Figure 6-6: Serial Host Interface HRDY Timing

Symbol	Parameter	Min	Max	Unit
t11	Positive edge of the 15th SHPICK to HRDY falling edge (for memory read)	_	16	ns
t12	HRDY low period for memory read/write	_	61.52	ns
t13	Positive edge of the 16th SHPICK to HRDY falling edge (for command access)	—	16	ns
t14	Positive edge of the 16th SHPICK to HRDY falling edge (for memory write)		16	ns

Table 6-5: Serial	Interface HRDY	Timing
-------------------	----------------	--------

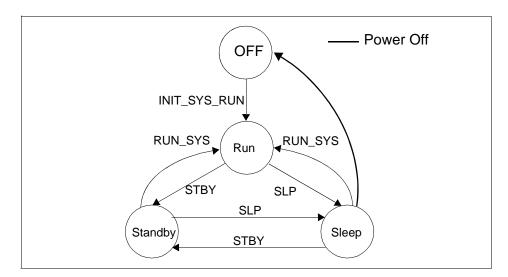
Chapter 7 Power Management

7.1 Power Management State Description

The S4E5B001B00A00 controller has the following power states:

• OFF State:

Power for the S4E5B001B00A00 and internal Memory is off. Upon power-up, the Host must issue a hardware reset and an INIT_SYS_RUN command to initialize the S4E5B001B00A00.

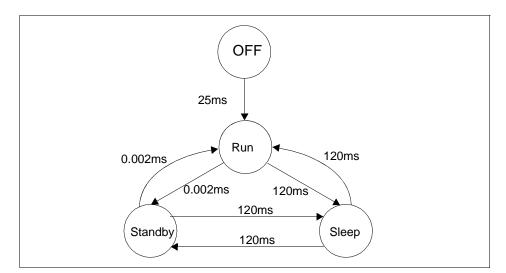

- Run State: The S4E5B001B00A00 is ready for operation. In this state the display can be updated.
- Standby State: The S4E5B001B00A00 is in power save mode. The Host should not access memory while in this state.
- Sleep Mode:

The S4E5B001B00A00 is in power save mode. Sleep Mode initiates the Power Pin power down cycles. The Host should not access memory while in this state.

The following table summarizes the S4E5B001B00A00 functionality for each power state.

Power Mode	S4E5B001B00A00Controller State	S4E5B001B00A00 PLL State	PMIC State	Memory Data Retained	Power Consumption
OFF	Unknown	Unknown	Unknown	No	NA
Run	Active All clocks active	Active	ON	Yes	Low or High (depending on host and display activity)
Standby	Power Save Mode All module clocks gated off PLL is running	Active	ON	Yes	Lower
Sleep	Power Save Mode Power Pin cycle off PLL off	Powered-Down	OFF	Yes	Lowest

Table 7-1: S4E5B001B00A00 Power State Functionality Summary



The following figure shows how to transition between S4E5B001B00A00 power states.

Figure 7-1: State Transition Diagram

To transition between S4E5B001B00A00 power states the following steps are required.

Current	Next State Requirements				
State	Off	Run	Standby	Sleep	
OFF	NA	1. Power on Reset 2. Run Cmd INIT_SYS_RUN	Not Possible.	Not Possible.	
Run	1. Host Save Memory Contents 2. Run Cmd SLP 3. Power off	NA	1. Run Cmd STBY	1. Run Cmd SLP	
Standby	1. Run Cmd SLP 2. Power off	1. Run Cmd RUN_SYS	NA	1. Run Cmd RUN_SYS	
Sleep	1. Power off	1. Run Cmd RUN_SYS	1. Run Cmd STBY	NA	

The estimated time required to transition between S4E5B001B00A00 power states is shown in the following figure and summarized in the following table.

Figure 7-2: State Transition Estimated Time

Table 7-3.	State Transition	Estimated	Time
1000 / 5.	Sidic Transmon	Loundica	1 11110

Current	Estimated Transition Time			
State	Off	Run	Standby	Sleep
OFF	NA	25ms	NA	NA
Run	NA	NA	0.002ms	120ms
Standby	NA	0.002ms	NA	120ms
Sleep	NA	120ms	120ms	NA

Chapter 8 Host Interface

8.1 Host Cycle Sequences

8.1.1 Command and Parameter Cycle

A typical cycle consists of a Command and a variable number of parameters depending on the expected parameter count for each specific command. The following figures shows a typical cycle.

Host Cycle ——	Command	Parameters 1	Parameters 2	S Parameters N	}
HRDY]

Figure 8-1: Command Mode Host Cycle Example

The HRDY line is deasserted (low) after the last parameter. When the sequencer is ready to accept new commands, HRDY is asserted (high) again.

8.1.2 Memory Access Combination Cycle

Commands that require Host memory access require a combination of Command/Parameter and Register Read/Write cycles. The HRDY line will deassert (low) during the memory read/write data cycles.

Host Cycle ——		ParN S RDWR_R	EGX 0x0154 XMemRd/WrX	emRd/Wr
HRDY	S			

Figure 8-2: Memory Access Combination Cycle

8.2 HRDY (Wait Line) Usage

When a command is issued, the command sequencer must execute a set of instruction codes based on the specific command. The execution time required for each command depends on the number of instruction codes that must be completed.

Once a command is issued, the host interface must not issue any new commands until HRDY is asserted High. If new Commands are inserted during this time, it will be ignored.

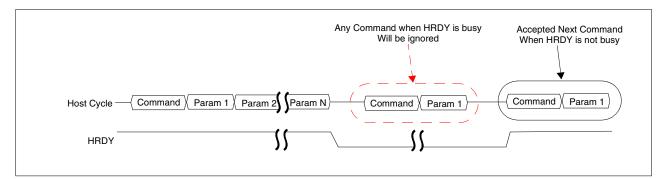


Figure 8-3: Command Mode Host Cycle Example for Host with HRDY

If the HRDY line is not used, the Host can poll the Host Interface Busy Status bit, REG[000Ah] bit 5, using the RD_REG command.

The following figure shows a typical command/parameter sequence using Host Interface Busy Status polling.

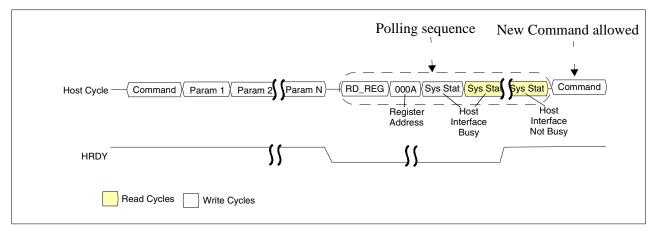
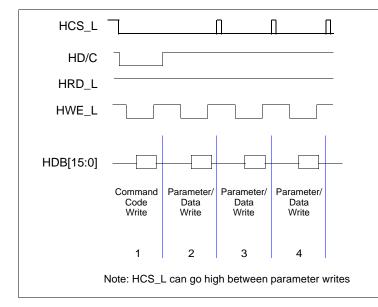



Figure 8-4: Command Mode Host Cycle Example for Host without HRDY

8.3 Intel 80 16-Bit Host Operations

The following figure shows a typical command mode operation with parameter/data writes only.

Figure 8-5: Command Mode Operation - Parameter/Data Writes Only

The following figure shows a typical command mode operation for reading register data.

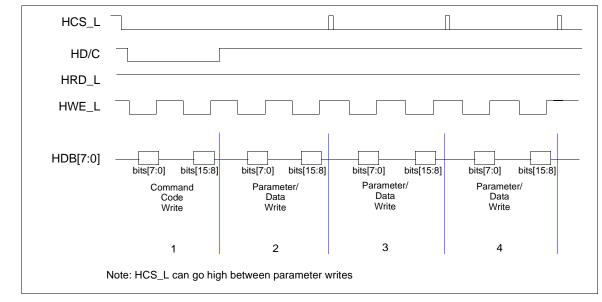



Figure 8-6: Command Mode Operation - Register Read Data

8.4 Intel 80 8-Bit Host Operations

The following figure shows a typical command mode operation with parameter/data writes only.

Figure 8-7: Command Mode Operation - Parameter/Data Writes Only

The following figure shows a typical command mode operation for reading register data.

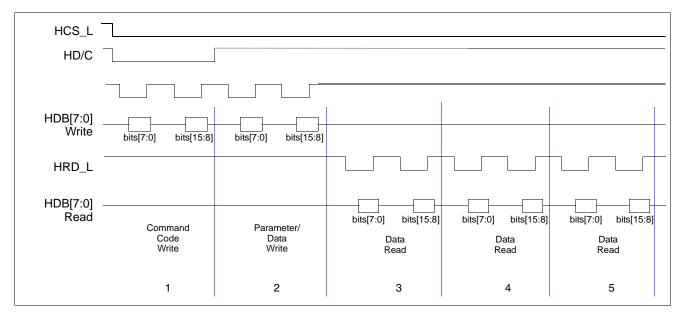


Figure 8-8: Command Mode Operation - Register Read Data

8.5 Serial Host Operations

8.5.1 Protocol Timing

Following diagram shows Serial Host Protocol timing. At the beginning of data transfer, SHPICS_L goes low and SHPICK begins toggling. The write data will be captured at the positive edge of SHPICK. The read data will begin to output with a small delay (see parameter t6 in Serial Host timing) from the rising edge of SHPICK which will be captured by the host at the positive edge of SHPICK.

There is a additional Command/Data pin (HD/C) to select command or data phase. This HD/C pin can be implemented by Host's GPIO.

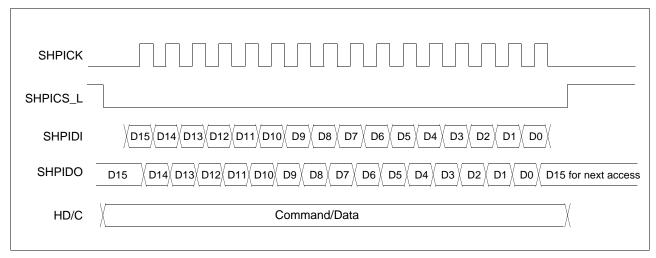


Figure 8-9: Serial Host Protocol timing

8.5.2 Command Transfers

The following figure shows the command transfer sequence for the S4E5B001B00A00 Serial Host. The command sequence is composed of two 16-bit phases.

- 1. Command phase
- 2. Data/Parameter Phase (Write or Read)

The command/data protocol is the same as for the 8/16-bit Host. Commands are sent from Host before the Data Phase. HD/C must be Low during the Command phase and must be High during the Data/Parameter phase. The Data/Parameter direction is determined by decoding the command during command phase. For a list of commands and their associated data/parameters, see Chapter 8.6, "Command List" on page 38.

All commands except for the RD_REG command (0x0010) use the command sequence shown below. Note that the data/parameter phase is not required for all commands.

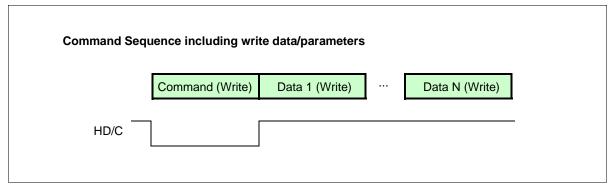


Figure 8-10: Serial Host Write Command Sequence

The RD_REG command (0x0010) uses the following command sequence which includes a Dummy Data Read cycle before the actual Read Data is available.

Read	Command Sequen	ce including read c	lata		
	Command (Write)	Data 1 (Write)	Dummy Read	Data 1 (Read)	 Data N (Read)
HD/C					

Figure 8-11: Serial Host Read Command Sequence

8.6 Command List

The following commands are applicable for the 16-bit Indirect Interface.

Table 8-1: Host	Interface	Command	Summarv
10000 0 11 11050	111101 10100	Commenter	Summery

Code				Parameters			
16-bit Indirect - 2 bytes	Command	1	2	3	4	5	Description
		•	System Cor	mmands		•	
0x00	Reserved	—	—	—	_	—	Reserved
0x01	INIT_PLL	Fixed Value	Fixed Value	Fixed Value	-	_	and Go Into Standby Mode. This command should only be used when auto-load from flash is disabled, CNF4 = 1.
0x02	RUN_SYS	—	—	—	—	—	Got to Run Mode
0x04	STBY	—	—	—	_	—	Go to Standby Mode
0x05	SLP	—	—	—		—	Go to Sleep Mode
0x06	INIT_SYS_RUN	—	—	—	_	_	Initialize System and Go into Run State
0x07	—	—	—	—	_	—	
0x08	—	—	—	—	—	—	
0x09	Reserved	—	—	—		—	Reserved
0x0A	Reserved		—			_	Reserved
0x0B	INIT_ROTMODE	ROTMODE	—	—	—	—	Initialize Rotation Mode Timings
0x0C	Reserved		—	—			Reserved
0x0E 0x0F			—			—	
UXUF		- Begiet	er and Memory			—	
0x10	RD_REG	REGADDR[15:0]	-	—		_	Read Register
0x10	WR_REG	REGADDR[15:0]	WDATA[15:0]				Write Register
0x12	—	-					
0x12			_	_			
		P	PIP and Cursor In	nit Commands		I	
0x14	PIP_DISABLE	—	—	—	—	—	Disable the PIP window
0x15	PIP_ENABLE	ARG[15:0]	HSIZE	VSIZE	PIP Pipeline[15:0]	—	Configure and enable the PIP window
0x16	PIP_ADRCFG	MA[15:0]	MA[25:16]	—	_	—	PIP Data Storage Location
0x17	PIP_XYSETUP	XSTART	YSTART	—	_	—	Setup Position on screen
0x18	CSR_MAINCFG	ARG[15:0]	HSIZE	VSIZE	CSR Pipeline[15:0]	_	Initialize Cursor
0x19	CSR_XYSETUP	XSTART	YSTART	—		_	Setup CSR and Position on screen
0x1A	CSR_ADRCFG	ARG[15:0]	—	—	_	—	Cursor Address Pointer Setup
		-1	Burst Access	Commands	r	T	
0x1C	BST_RD_SDR	MA[15:0]	MA[25:16]	BC[15:0]	BC[25:16]	—	Start Burst Read Memory Memory
0x1D	BST_WR_SDR	MA[15:0]	MA[25:16]	BC[15:0]	BC[25:16]	—	Start Burst Write Memory Memory
0x1E	BST_END_SDR	—	—	—		—	Burst End
0x1F	_	—			—	—	
0×20	LD_IMG	ARG[15:0]	Image Loading	Commands	_		Load Image Full
0x20 0x22	LD_IMG_AREA	ARG[15:0]	XSTART[11:0]	 YSTART[11:0]		— HEIGHT[12:0,	Load Image Area With
0x23	LD_IMG_END	_	_	_	_	_	parameters Load Image End
0x25	LD_IMG_SETADR	MA[15:0]	MA[31:16]	_		_	Set Load Image Manual Address
0x26	LD_IMG_DSPEADR	_	_	_	_	_	Set Load Image to use Display Engine's Address
			Polling Cor	nmands			
0x28	WAIT_DSPE_TRG	-	-	-	—	-	Wait For Display Engine Trigger Done

Code				Parameters			
16-bit Indirect - 2 bytes	Command	1	2	3	4	5	Description
0x29	WAIT_DSPE_FREND	—	—	—	_	—	Wait For Display Engine Frame End
0x2A	WAIT_DSPE_LUTFREE	—	—	—	_	—	Wait For Display Engine At least 1 Pipeline is Free
0x2B	Reserved	—	—			—	Reserved
		١	Naveform Updat	e Commands			
0x30	RD_WFM_INFO	MA[15:0]	MA[31:16]		—	—	Read Waveform Information
0x32	UPD_INIT	—	—	—	—	—	Panel Update Buffer Initialize
0x33	UPD_FULL	ARG[15:0]	—	—	—	—	Panel Update Buffer Full
0x34	UPD_FULL_AREA	ARG[15:0]	XSTART[11:0]	YSTART[11:0]	WIDTH[12:0]	HEIGHT[12:0]	Panel Update Buffer Full Area
0x35	UPD_PART	ARG[15:0]	—	—	—	—	Panel Update Buffer Partial
0x36	UPD_PART_AREA	ARG[15:0]	XSTART[11:0]	YSTART[11:0]	WIDTH[12:0]	HEIGHT[15:0]	Panel Update Buffer Partial Area
0x37	Reserved	—	—	—	—	—	Reserved
0x38	UPD_SET_IMGADR	ADR[15:0]	ADR[31:16]	—	—	—	Set Image Buffer Start Address
0x39	—	—	—	—	_	—	
0x3A-0x3F	Reserved	—	—	—	_	—	Reserved

8.7 Host Interface Command Descriptions

8.7.1 INIT_PLL (0x01 + 3 parameters)

This command initializes the PLL. PLL Configuration is programmed using the three input parameters. When PLL Lock is asserted, this command sequence is completed.

Parameter 1								
				Val	ue			
15		14	13	12	11	10	9	8
				Val	ue			
7		6	5	4	3	2	1	0
bits 15-0		Val	ue					
0.00 10 0			ese bits must be	e set to 0003h				
		1110	se ons must be	- set to 000511.				
Parame	ter 2							
				Val				
15	1	14	13	12	11	10	9	8
15	I	17	10	Val		10	0	0
7		6	5	4	3	2	1	0
hita 15 0	•	V-1				•		
bits 15-0		Val						
		The	ese bits must be	e set to 5949h.				
Paramet	ter 3							
				Val	ue			
15		14	13	12	11	10	9	8
				Val	ue			
7		6	5	4	3	2	1	0
bits 15-0		Val	110					

bits 15-0

These bits must be set to 0040h.

8.7.2 RUN_SYS (0x02 + 0 parameters)

This command places the S4E5B001B00A00 into normal operation mode by removing it from Standby or Sleep mode.

8.7.3 STBY (0x04 + 0 parameters)

This command places the S4E5B001B00A00 into Standby mode. To wake up from Standby mode, use the RUN_SYS command.

8.7.4 SLP (0x05 + 0 parameters)

This command places the S4E5B001B00A00 into Sleep mode. Sleep mode differs from Standby mode in that the PLL is powered down. To wake up from Sleep mode, use the RUN_SYS command.

8.7.5 INIT_SYS_RUN (0x06 + 0 parameters)

This command initializes the S4E5B001B00A00 and must be run at power-on/reset.

8.7.6 INIT_ROTMODE (0x0B + 1 parameter)

This command initializes the S4E5B001B00A00 Rotation Mode

n/a Area Coordinate Rotatio bits 1-0	on Select					
n/a Area Coordinate Rotation bits 1-0						
15 14 13 12 11 10 9	8					
n/a						
7 6 5 4 3 2 1	0					

bits 9-8

Area Coordinate Rotation Select bits [1:0]

These bits select the rotation mode used to define the area update input coordinates

bits 9-8	Area Coordinate Rotation
00b	0°
01b	90°
10b	180°
11b	270°

Table 8-2: Area Coordinate Rotation Selection

8.7.7 RD_REG (0x10 + 2 parameters)

This command initiates a low level register read from the address specified by parameter 1. The returned data value is available in parameter 2.

Parameter 1							
			Register Add	Iress bits 15-8			
15	14	13	12	11	10	9	8
			Register Ade	dress bits 7-0			
7	6	5	4	3	2	1	0
Parameter 2	2						
			Register Read	I Data bits 15-8			
15	14	13	12	11	10	9	8
			Register Rea	d Data bits 7-0			
7	6	5	4	3	2	1	0

Note

Parameter 2 may be repeated multiple times for burst operation, i.e. memory burst read operation. Refer to Firmware programming guides for memory read burst flow.

8.7.8 WR_REG (0x11 + 2 parameters)

This command initiates a low level register write of the data specified by parameter 2 to the address specified by parameter 1..

Parameter 1	arameter 1						
			Register Add	ress bits 15-8			
15	14	13	12	11	10	9	8
			Register Add	dress bits 7-0			
7	6	5	4	3	2	1	0
Parameter 2							
			Register Write	Data bits 15-8			
15	14	13	12	11	10	9	8
			Register Write	e Data bits 7-0			
7	6	5	4	3	2	1	0

Note

Parameter 2 may be repeated multiple times for burst operation, i.e. memory burst write operation. Refer to Firmware programming guides for memory write burst flow.

8.7.9 PIP_DISABLE (0x14 + 0 parameters)

This command disables the PIP window.

8.7.10 PIP_ENABLE (0x15 + 4 parameters)

This command enables the PIP window.

els that are transparent in the PIP when PIP Transparency is enabled If the PIP's pixel value equals the PIP Transparency Value, the corr	PIP Transparency Enable 8 1 0						
PIP Pixel Output Value Control bits 1-0 PIP Bpp Control bits 1-0 n/a 7 6 5 4 3 2 bits 15-12 PIP Transparency Value bits [3:0] These bits are used to specify a 4bpp transparency value for the PIF els that are transparent in the PIP when PIP Transparency is enabled If the PIP's pixel value equals the PIP Transparency Value, the corr							
7 6 5 4 3 2 bits 15-12 PIP Transparency Value bits [3:0] These bits are used to specify a 4bpp transparency value for the PIF els that are transparent in the PIP when PIP Transparency is enabled If the PIP's pixel value equals the PIP Transparency Value, the corr	1 0						
bits 15-12 PIP Transparency Value bits [3:0] These bits are used to specify a 4bpp transparency value for the PIP els that are transparent in the PIP when PIP Transparency is enabled If the PIP's pixel value equals the PIP Transparency Value, the corr	1 0						
These bits are used to specify a 4bpp transparency value for the PIF els that are transparent in the PIP when PIP Transparency is enabled If the PIP's pixel value equals the PIP Transparency Value, the corr							
For 1bpp mode, the PIP Transparency Value is compared against PI in parameter 4. For 2bpp mode, the PIP Transparency Value is compared against PI and 3 in parameter 4.	hese bits are used to specify a 4bpp transparency value for the PIP to determine the pix- s that are transparent in the PIP when PIP Transparency is enabled. the PIP's pixel value equals the PIP Transparency Value, the corresponding pixel from e Main Image will be used instead. or 1bpp mode, the PIP Transparency Value is compared against PIP Key Values 0 and 1 parameter 4. or 2bpp mode, the PIP Transparency Value is compared against PIP Key Values 0, 1, 2 and 3 in parameter 4. or 4bpp mode, the PIP Transparency Value is compared against the PIP Key Values 0, 1, 2						
bit 8PIP Transparency EnableThis bit enables transparency function.When this bit = 0b, PIP Transparency is disabledWhen this bit = 1b, PIP Transparency is enabled	This bit enables transparency function. When this bit = 0b, PIP Transparency is disabled						
bits 7-6 PIP Pixel Output Value Control bits [1:0] These bits control the bit-wise logic operation performed on non-transparent Pixels to produce resultant pixel output value.							
Table 8-3: PIP Pixel Output Value Selection							
bits 7-6 PIP Pixel Output Value							
00b No Change to PIP Pixel Value							
01b (Image Buffer Data) XOR (PIP Pixel Value)							
10b (Image Buffer Data) XOR ~(PIP Pixel Value)							
11b ~(PIP Pixel Value)							

bits 5-4 PIP Bpp Control bits [1:0] These bits configure the bit-per-pixel format of the image data used for the PIP.

Parameter 1 bits 5-4	PIP Bit-Per-Pixel Format
00b	the PIP is in 1 BPP mode
01b	the PIP is in 2 BPP mode
10b	the PIP is in 4 BPP mode
11b	Reserved

Table 8-4: PIP Bit-Per-Pixel Format Selection

Parameter 2							
	n/a				PIP Width bits 12-8		
15	14	13	12	11	10	9	8
			PIP Widt	h bits 7-0			
7	6	5	4	3	2	1	0

bits 12-0

PIP Width bits [12:0]

These bits specify the width of the PIP, in pixels.

Note

The PIP width must be less than or equal to the width of the display size.

Parameter 3							
	n/a				PIP Height bits 12-8	3	
15	14	13	12	11	10	9	8
			PIP Heig	ht bits 7-0			
7	6	5	4	3	2	1	0

bits 12-0

PIP Height bits [12:0]

These bits specify the height of the PIP, in pixels.

Note

The PIP height must be less than or equal to the height of the display size.

Parameter 4								
	PIP Key Va	alue 3 bits 3-0			PIP Key Valu	ue 2 bits 3-0		
15	14	13	12	11	10	9	8	
	PIP Key Va	alue 1 bits 3-0		PIP Key Value 0 bits 3-0				
7	6	5	4	3	2	1	0	
Bits 15-12	Th	P Key Value 3 b ese bits maps a ll be output to t	value of 11b i				pp value that	
Bits 11-8	Th	P Key Value 2 b ese bits maps a Il be output to t	value of 10b i				pp value that	
Bits 7-4	Th	P Key Value 1 b ese bits maps a at will be output	value of 01b o					
Bits 11-8	Th	P Key Value 0 b ese bits maps a at will be output	value of 00b o			1 0	11	

8.7.11 PIP_ADRCFG (0x16 + 2 parameters)

This command setup the PIP Start Address

Parameter 1							
-			PIP Buffer Start	Address bits 15-8			
15	14	13	12	11	10	9	8
		PIP Buffe	er Start Address bits	7-0 (bits 2-0 are always	ays 000b)		•
7	6	5	4	3	2	1	0
Parameter 2	2						
		n	/a			PIP Buffer Start A	Address bits 25-24
15	14	13	12	11	10	9	8
			PIP Buffer Start /	Address bits 23-16			
7	6	5	4	3	2	1	0

Parameter 2 bits 9-0

Parameter 1 bits 15-0

PIP Buffer Start Address bits [25:0]

These bits specify the PIP Buffer start address in internal memory address space. The PIP Buffer start address must be 64-bit aligned (writing to bits 2-0 has no effect).

8.7.12 PIP_XYSETUP (0x17 + 2 parameters)

This command setup the PIP to be displayed.

This command has the following limitations.

Rotation	Врр	Limit
	1	X start position must be a multiple of 64
0 Degree	2	X start position must be a multiple of 32
	4	X start position must be a multiple of 16
	1	Y start position must be a multiple of 64
90 Degree	2	Y start position must be a multiple of 32
	4	Y start position must be a multiple of 16
	1	(Panel Width - PIP Width - X Start): must be a multiple of 64
180 Degree	2	(Panel Width - PIP Width - X Start): must be a multiple of 32
	4	(Panel Width - PIP Width - X Start): must be a multiple of 16
	1	(Panel Width - PIP Height - Y Start): must be a multiple of 64
270 Degree	2	(Panel Width - PIP Height - Y Start): must be a multiple of 32
	4	(Panel Width - PIP Height - Y Start): must be a multiple of 16

Parameter 1							
	n/a				PIP X-Start bits 12-	8	
15	14	13	12	11	10	9	8
			PIP X-Sta	art bits 7-0			
7	6	5	4	3	2	1	0

bits 12-0

PIP X-Start bits [12:0]

These bits specify the X (or Y) start position of the PIP relative to the user reference point, in pixels. See Chapter 9.7, "PIP Relative to Panel Rotation" on page 81.

Note

The PIP cannot be placed entirely off screen. At least 1 pixel must remain on the visible display.

Parameter 2							
	n/a				PIP Y-Start bits 12-8	8	
15	14	13	12	11	10	9	8
			PIP Y-Sta	art bits 7-0			
7	6	5	4	3	2	1	0

bits 12-0

PIP Y-Start bits [12:0]

These bits specify the Y position start of the PIP window.

Note

The PIP cannot be placed entirely off screen. At least 1 pixel must remain on the visible display.

8.7.13 CSR_MAINCFG (0x18 + 4 parameter)

Initialize Cursor window setup.

Parameter 1							
	Cursor Transpare	ncy Value bits 3-	0		n/a		
15	14	13	12	11	10	9	8
	put Value Control	Cursor Bp	p Control bits 1-0	Cursor Pixel Write	Swap Sel bits 1-0	n/a	Cursor Enable
7	6	5	4	3	2	1	0
bits 15-12	The pixe bit 8 If cu the 1 For and For 1, 2 For	the bits are u els that are the B = 1b. Aursor's pixel Main or PIF 1bpp mode, 1 in parame 2bpp mode, and 3 in pa	the cursor Trans	4bpp transpare cursor when cursor Transpa- sed instead. sparency Value sparency Value	arency Value, t e is compared a e is compared a	ency is enabl the correspor against curso against curso	led, Parameter 1 nding pixel from or Key Values 0 or Key Values 0,
bit 8	The Whe	se bits enab en this bit =	rency Enable les the cursor Tr 0b, cursor Trans 1b, cursor Trans	sparency is disa	abled.		
bits 7-6	The	se bits contr PIP/Image	ttput Value Cont ol the bit-wise lo ouffer resultant p	ogic operation poixel data to pro	oduce resultant	-	
		Table a	3-5: Cursor Pixe	l Output Value	Selection		
	bits	7-6	C	Cursor Pixel Ou	tput Value		

bits 7-6	Cursor Pixel Output Value
00b	No Change to Cursor Pixel Value
01b	(Image Buffer Data/PIP Pixel Value) XOR (Cursor Pixel Value)
10b	(Image Buffer Data/PIP Pixel Value) XOR ~(Cursor Pixel Value)
11b	~(Cursor Pixel Value)

bits 5-4 Cursor Bpp Control bits [1:0] These bits configure the bit-per-pixel format of the image data used for the Cursor.

bits 5-4	Cursor Bit-Per-Pixel Format
00b	the Cursor is in 1 BPP mode
01b	the Cursor is in 2 BPP mode
10b	the Cursor is in 4 BPP mode
11b	Reserved

Table 8-6: Cursor Bit-Per-Pixel Format Selection

bits 3-2

Host Cursor Access Pixel Swap Selection bits [1:0]

These bits configure way the pixels are swapped when data in the cursor memory is accessed by the host.

Bit 0 - Pixel Order Reverse.

Bit 1 - Byte Order Reverse.

Refer to the table below for more information.

Table 8-7: Packed Pixel Mode Selection

	Host Pixel Data Expected Format								
Cursor BPP Mode	Swap Select = 00	Swap Select = 01	Swap Select = 10	Swap Select = 11					
1 bpp	{P15,P14,P13,P12,P11,P10,P9,P8	{P0,P1,P2,P3,P4,P5,P6,P7,	{P7,P6,P5,P4,P3,P2,P1,P0,	{P8,P9,P10,P11,P12,P13,P14,P15,					
	P7,P6,P5,P4,P3,P2,P1,P0}	P8,P9,P10,P11,P12,P13,P14,P15}	P15,P14,P13,P12,P11,P10,P9,P8}	P0,P1,P2,P3,P4,P5,P6,P7}					
2 bpp	{P7,P6,P5,P4,	{P0,P1,P2,P3,	{P3,P2,P1,P0,	{P4,P5,P6,P7,					
	P3,P2,P1,P0}	P4,P5,P6,P7}	P7,P6,P5,P4}	P0,P1,P2,P3}					
4 bpp	{P3,P2,	{P0,P1,	{P1,P0,	{P2,P3,					
	P1,P0}	P2,P3}	P3,P2}	P0,P1}					

bit 0

Cursor Enable

This bit enables the Cursor function.

n/a		Reserved	Reserved	Cursor Wic	Cursor Width bits 11-8		
15	14	13	12	11	10	9	8
			Cursor Wid	Ith bits 7-0			
7	6	5	4	3	2	1	0
	Thi	s bit must be se	et to 0b.				
	1 11	s bit must be se	et to UD.				
oits 11-0	Cur	sor Width bits	[11:0]				
	TT1		the width of th	a auroar in ni	wala		

- Poi 90° and 270° rotation the Cursor width becomes the Cursor Height.
 The width for the cursor must NOT be programmed to 0 when the cursor is enabled
- For cursor widths that are not a multiple of (16 bits/cursor bpp), the width of the image in memory must be padded up to the next multiple of (16 bits/cursor bpp).

	n/a		Reserved		Cursor Heig	ht bits 11-8	
15	14	13	12	11	10	9	8
			Cursor Heig	ht bits 7-0			
7	6	5	4	3	2	1	0
its 11-0	Cur	s bit must be so sor Height bits se bits specify		ne cursor, in p	pixels.		
	Note 1. 2. 3.	The maximu The height f enabled	um value for Cu for the cursor m eights that are a	ust NOT be p	programmed to		

Parameter 4									
	Cursor Key V	alue 3 bits 3-0			Cursor Key Va	alue 2 bits 3-0			
15	14	13	12	11	10	9	8		
	Cursor Key V	alue 1 bits 3-0			Cursor Key Va				
7	6	5	4	3	2	1	0		
Bits 15-12	The	1	value of 11b in		ouffer to a user p bits are used f		4bpp value		
Bits 11-8	The	Cursor Key Value 2 bits [3:0] These bits maps a value of 10b in the Cursor buffer to a user programmable 4bpp value that will be output to the display engine. These bits are used for 2bpp only.							
Bits 7-4	The	-	value of 01b o		ursor buffer to a These bits are	1 0	11		
Bits 3-0	The	1	value of 00b o		rsor buffer to a These bits are	1 0			

8.7.14 CSR_XYSETUP (0x19 + 2 parameters)

This command setup the Cursor window position to be displayed.

Parameter 1							
	n/a			C	ursor X-Start bits 12	-8	
15	14	13	12	11	10	9	8
			Cursor X-S	itart bits 7-0			
7	6	5	4	3	2	1	0

bits 12-0

Cursor X-Start bits [12:0]£

These bits specify the X start position of the cursor relative to the user reference point, in pixels. Please see chapter 9.8, "Cursor Relative to Panel Rotation" on page 84.

Note

The cursor cannot be placed entirely off screen. At least 1 pixel must remain on the visible display.

Parameter 2							
	n/a			С	ursor Y-Start bits 12	-8	
15	14	13	12	11	10	9	8
			Cursor Y-S	itart bits 7-0			
7	6	5	4	3	2	1	0

bits 12-0

Cursor Y-Start bits [12:0]

These bits specify the Y start position of the cursor relative to the user reference point, in pixels. Please see chapter 9.8, "Cursor Relative to Panel Rotation" on page 84.

Note

The cursor cannot be placed entirely off screen. At least 1 pixel must remain on the visible display.

8.7.15 CSR_ADRCFG (0x1A + 1 parameters)

This command sets up the cursor address.

Parameter 1							
		n/a			Curso	r Memory Pointer b	its 10-8
15	14	13	12	11	10	9	8
			Cursor Memory	Pointer bits 7-0			
7	6	5	4	3	2	1	0

bits 10-0

Cursor Memory Pointer bits [10:0]

This register configures the index for the Cursor Memory Access Port, as well as the address used by the display engine when accessing the cursor image.

This pointer address is automatically incremented when the Cursor Memory Access Port is written to or read from. For read accesses, one dummy read must be performed from the Cursor Memory Access Port before actual data can be retrieved from the cursor memory. During read accesses, the current word being read from the Cursor Memory Access Port is from the address pointed to by this parameter - 1.

Before the display engine can access the cursor memory, this parameter must be programmed to the correct address in memory where the cursor image starts.

8.7.16 BST_RD_SDR (0x1C + 4 parameters)

This command starts a memory burst read operation.

Parameter 1							
			Host Memory Acc	ess Address bits 15-8			
15	14	13	12	11	10	9	8
			Host Memory Acc	ess Address bits 7-0			
7	6	5	4	3	2	1	0
Parameter 2		Res	served			Host Memory Acce	
15	14	13	12	11	10	9	8
	•	•	Host Memory Acce	ess Address bits 23-16		•	
_	6	5	4	3	2	1	0

Parameter 2 bits 9-0 Parameter 1 bits 15-0

-0 Host Memory Access Address bits [25:0]

These bits specify the 26-bit memory address used for raw memory accesses by the Host. For raw memory reads and raw memory writes, the start address must be aligned on a 16-bit boundary (bit 0 = 0b).

Note

- 1. The Host Raw Memory Access Address must be set within the available memory range and the minimum read count is 2 words.
- 2. Memory read is not supported for Intel 80 8-bit Host Interface.

Parameter 3							
			Host Raw Memory A	ccess Count bits 15-8	3		
15	14	13	12	11	10	9	8
			Host Raw Memory A	ccess Count bits 7-0			
7	6	5	4	3	2	1	0
Parameter 4							
		Re	served				ory Access Count 25-24
15	14	13	12	11	10	9	8
			Host Raw Memory Ac	cess Count bits 23-1	6		
7	6	5	4	3	2	1 1	0

Parameter 4 bits 9-0

Parameter 3 bits 15-0

Host Raw Memory Access Count bits [25:0]

These bits are only used for raw memory accesses. These bits are programmed before the start of a host memory operation to specify the number of 16-bit accesses that will be performed for raw memory accesses by the host memory interface during burst operations. The minimum number of raw memory accesses that can be performed is 1.

During a host memory access, these bits can be used with the following formulas to determine the number of 16-bit accesses remaining for the current memory access. For write access, these bits = number of words left to be written. For read access, these bits = number of words left to be read -1.

For raw memory access reads, the access count must be set to the required number of reads + 1. Once the read operation is complete, the host memory interface should be reset.

Note

- 1. These bits must be set such that the Host Memory Access operation is within the configured memory range.
- 2. These bits must not be set to 0000_0000h for a Host memory access.

8.7.17 BST_WR_SDR (0x1D + 4 parameters)

This command starts a memory burst write operation.

Parameter 1							
			Host Memory Acce	ess Address bits 15-8			
15	14	13	12	11	10	9	8
			Host Memory Acc	ess Address bits 7-0			
7	6	5	4	3	2	1	0
Parameter 2		Res	served			Host Raw Memor	
15	14	13	12	11	10	9	8
			Host Memory Acce	ss Address bits 23-16			
_	6	5	4	3	2	1 1	0

Parameter 2 bits 9-0 Parameter 1 bits 15-0

Host Memory Access Address bits [25:0]

These bits specify the 26-bit memory address used for raw memory accesses by the Host. For raw memory reads and raw memory writes, the start address must be aligned on a 16-bit boundary (bit 0 = 0b).

Note

The Host Raw Memory Access Address must be set within the available memory range and the minimum read count is 2 words.

Parameter 3							
			Host Raw Memory A	ccess Count bits 15-	8		
15	14	13	12	11	10	9	8
			Host Raw Memory A	Access Count bits 7-0)		
7	6	5	4	3	2	1	0
Parameter 4							
		Rese	erved				ory Access Count 25-24
15	14	13	12	11	10	9	8
		F	lost Raw Memory Ac	cess Count bits 23-	16		
7	6	5	4	3	2	1	0

Parameter 4 bits 9-0

Parameter 3 bits 15-0

Host Raw Memory Access Count bits [25:0]

These bits are only used for raw memory accesses. These bits are programmed before the start of a host memory operation to specify the number of 16-bit accesses that will be performed for raw memory accesses by the host memory interface during burst operations. The minimum number of raw memory accesses that can be performed is 1.

During a host memory access, these bits can be used with the following formulas to determine the number of 16-bit accesses remaining for the current memory access. For write access, these bits = number of words left to be written. For read access, these bits = number of words left to be read -1.

For raw memory access reads, the access count must be set to the required number of reads + 1. Once the read operation is complete, the host memory interface should be reset.

Note

- 1. These bits must be set such that the Host Memory Access operation is within the configured memory range.
- 2. These bits must not be set to 0000_0000h for a Host memory access.

8.7.18 BST_END_SDR (0x1E + 0 parameters)

This command terminates a burst operation before it has completed.

Note

Any memory operation in progress should be terminated with this command before a new memory operation is initiated.

8.7.19 LD_IMG (0x20 + 1 parameter)

This command starts a Full Frame Memory Load operation according to the data packing settings in parameter 1.

Parameter 1									
		n/a			Host Packed Write Display Location Select	n	/a		
15	14	13	12	11	10	9	8		
n/a	Host Packed Write Bit Expansion Disable	Host Packed Pix	el Select bits 1-0	Host Packed Write Transparency Enable	n/a				
7	6	5	4	3	2	1	0		
bit 6	Wh Wh Hos Thi furt Wh	s bit selects the en this bit = 0 t en this bit = 1 t st Packed Write s bit disables th her info. en this bit = 0 t en this bit = 1 t	o, host packed o, host packed e Bit Expansio ne expansion o o, expansion of	memory writes memory writes n Disable f packed pixel	s are written to s are written to write data. Re write data is en	the PIP Buffe fer to bits 5-4 o nabled.	r.		
	Note T	e his bit must be	set to 0b for th	he Main Image	e Buffer (bit 10) = 0b).			
bits 5-4	The	st Packed Pixel se bits only ha ked pixel mode	ve an effect w	hen Packed Pix		elected. These	bits select the		

bits 5-4		(panding Enable nd PIP Buffers)	bit 6 = 1b - Bit Expanding Disabled (PIP Buffer Only)		
DILS 5-4	Input Packed Pixel Mode	Storage in Memory	Input Packed Pixel Mode	Storage in Memory	
00b	1 bpp	4 bpp	1 bpp	1 bpp	
01b	2 bpp	4 bpp	2 bpp	2 bpp	
10b	4 bpp	4 bpp	4 bpp	4 bpp	
11b	1 Byte-per-pixel	4 bpp	1 Byte-per-pixel	4 bpp	

Table 8-8: Packed Pixel Mode Selection

Host Packed Write Transparency Enable Enable Transparency for host packed pixel write. When this bit = 0b, Transparency is disabled. When this bit = 1b, Transparency is enabled.

bit 3

8.7.20 LD_IMG_AREA (0x22 + 5 parameters)

This command starts an Area Defined Frame Memory Load operation according to the data packing settings in the parameters.

		n/a			Host Packed Write Display Location Select		n/a	
15	14	13	12	11	10	9		8
n/a	Host Packed Write Bit Expansion Disable	Host Packed F	Pixel Select bits 1-0	Host Packed Write Transparency Enable	n/a			
7	6	5	4	3	2	1		0
it 6	Wh Hos This furt Wh	en this bit = st Packed Wr s bit disables her info. en this bit = 0	Ob, host packed Ib, host packed ite Bit Expansio the expansion of Ob, expansion of Ib, expansion of	memory writes on Disable of packed pixel f packed pixel	s are written to write data. Ret write data is er	the PIP Buff fer to bits 5-4 nabled.	fer.	iption fo
its 5-4	Hos The	his bit must b st Packed Pix ese bits only l	be set to 0b for t el Select bits [1 nave an effect w de used for host	:0] hen Packed Piz	xel Access is so		e bits s	select th
	1			5				

bits 5-4		(panding Enable nd PIP Buffers)	bit 6 = 1b - Bit Expanding Disabled (PIP Buffer Only)		
DILS 5-4	Input Packed Pixel Mode	Storage in Memory	Input Packed Pixel Mode	Storage in Memory	
00b	1 bpp	4 bpp	1 bpp	1 bpp	
01b	2 bpp	4 bpp	2 bpp	2 bpp	
10b	4 bpp	4 bpp	4 bpp	4 bpp	
11b	1 Byte-per-pixel	4 bpp	1 Byte-per-pixel	4 bpp	

bit 3

Host Packed Write Transparency Enable Enable Transparency for host packed pixel write. When this bit = 0b, Transparency is disabled. When this bit = 1b, Transparency is enabled.

n/a			Reserved	Pack	ed Pixel Rectangular >	K-Start Position bits	11-8
15	14	13	12	11	10	9	8
		Pack	ked Pixel Rectangula	r X-Start Position bit	s 7-0		
7	6	5	4	3	2	1	0
	of t	•	, in pixels, rela	ative to the top	ses. These bits a left corner of the set of	* •	-
				10			

For 90° and 270° rotation, the X-Start position must be set smaller than the frame data length.

Note

When 0° or 180° write rotation is selected and the packed pixel mode is:

2 bpp, the X-Start Position must be divisible by 8. 3 / 4 bpp, the X-Start Position must be divisible by 4.

1 Date non ninel the V Start Desition must be divisible by 4.

1 Byte-per-pixel, the X-Start Position must be divisible by 2.

Parameter 3												
n/a Reserved Packed Pixel Rectangular Y-Start Position bits 11-8												
15	14	13	12	11	10	9	8					
	Packed Pixel Rectangular Y-Start Position bits 7-0											
7	6	5	4	3	2	1	0					

bits 11-0

Packed Pixel Rectangular Y-Start Position bits [11:0]

These bits are only used for packed pixel accesses. These bits specify the Y-Start position of the image write, in pixels, relative to the top left corner of the display area. For further information, see 9.1, "Introduction" on page 68.

Note

For 0° and 180° rotation, the Y-Start position must be set smaller than the frame data length.

For 90° and 270° rotation, the Y-Start position must be set smaller than the line data length.

Parameter 4	ŀ						
	n/a			Packed Pi	xel Rectangular Wid	th bits 12-8	
15	14	13	12	11	10	9	8
			Packed Pixel Recta	ngular Width bits 7-0			
7	6	5	4	3	2	1	0

bits 12-0

Packed Pixel Rectangular Width bits [12:0] These bits are only used for packed pixel accesses. These bits specify the width of the image write, in pixels. For further information, see 9.1, "Introduction" on page 68.

Parameter 5							
	n/a			Packed Pix	el Rectangular Hei	ght bits 12-8	
15	14	13	12	11	10	9	8
			Packed Pixel Rectar	ngular Height bits 7-0)		
7	6	5	4	3	2	1	0

bits 12-0

Packed Pixel Rectangular Height bits [12:0]

These bits are only used for packed pixel accesses. These bits specify the height of the image write, in pixels. For further information, see 9.1, "Introduction" on page 68.

8.7.21 LD_IMG_END (0x23 + 0 parameters)

This command terminates a Load Image operation before it has completed and waits for the image load to finish before writing to the Memory.

Note

Any memory operation in progress should be terminated with this command before a new memory operation is initiated.

8.7.22 LD_IMG_SETADR (0x25 + 2 parameters)

This command sets the packed write memory location to the parameter value.

arameter 1							
			Host Memory Acce	ss Address bits 15-8			
15	14	13	12	11	10	9	8
	•		Host Memory Acce	ess Address bits 7-0			•
7	6	5	4	3	2	1	0
		Res	erved			Host Memory A	
						bits 2	25-24
4 5	14	13	12	11	10	9	8
15			Host Memory Acces	ss Address bits 23-16			
15			Tiost Memory Acces				

Parameter 2 bits 9-0

Parameter 1 bits 15-0

Host Memory Access Address bits [25:0]

These bits specify the 26-bit memory address used for manually configuring the packed pixel write location. The start address must be aligned on a 64-bit boundary (bits 2-0 = 000b).

8.7.23 LD_IMG_DSPEADR (0x26 + 0 parameters)

This command sets the packed write memory location to the address specified by the Display Engine image buffer.

8.7.24 WAIT_DSPE_TRG (0x28 + 0 parameters)

This command waits for the Display Update operation to complete. For examples of how the WAIT_DSPE_TRG command is used, see Chapter 12, "Firmware Programming Guide" on page 105.

8.7.25 WAIT_DSPE_FREND (0x29 + 0 parameters)

This command waits for the Display Update to complete outputting display frames. For examples of how the WAIT_DSPE_FREND command is used, see Chapter 12, "Firmware Programming Guide" on page 105.

8.7.26 WAIT_DSPE_LUTFREE (0x2A + 0 parameters)

This command waits for the Display Pipeline to have room for another update.

8.7.27 RD_WFM_INFO (0x30 + 2 parameters)

This command prepares the Waveform for use.

Parameter 1							
			Waveform Heade	er Address bits 15-8			
15	14	13	12	11	10	9	8
			Waveform Head	er Address bits 7-0			•
7	6	5	4	3	2	1	0
		•					
Parameter 2							
		r	n/a			Waveform Header	Address bits 25-24
15	14	13	12	11	10	9	8
			Waveform Heade	r Address bits 23-16			
-	6	5	4	3	2	1	0

Parameter 2 bits 9-0

Parameter 1 bits 15-0

0 Waveform Header Address bits [25:0]

These bits store the Waveform Header start address in Memory. These parameters should be programmed as follows.

Parameter 2 = 0000h

Parameter 1 = 108Ah

8.7.28 UPD_INIT (0x32 + 0 parameters)

This command issues a Panel Update Buffer Refresh with data from the Image Buffer. No display operation will occur.

8.7.29 UPD_FULL (0x33 + 1 parameter)

This command issues a Full Frame Full Update operation.

Parameter 1							
n/a	Reserved	n	/a		Display Update Wave	eform Mode bits 3-0	
15	14	13	12	11	10	9	8
	Display Update Pip	eline Select bits 3-0			n/a	а	
7	6	5	4	3	2	1	0
bit 14		erved default value	for this bit is 0)b.			
bits 11-8	The		-	-	3:0] 3 and 4. These	bits select the	Waveform
bits 7-4	The	se bits select t	line Auto Sele	om Pipeline 0	to Pipeline 14) s set, these bits		· ·
	Note T	-	not be prograr	nmed with a v	value of 1111b.		

8.7.30 UPD_FULL_AREA (0x34 + 5 parameters)

This command issues an Area Defined Full Update operation.

Parameter 1							
n/a	Reserved	r	ı/a		Display Update Wave	eform Mode bits 3-0	
15	14	13	12	11	10	9	8
	Display Update Pip	eline Select bits 3-0			n/	a	
7	6	5	4	3	2	1	0
bit 14		erved e default value	for this bit is ()b.			
bits 11-8	The		-	-	3:0] 3 and 4. These	bits select the	Waveform
bits 7-4	The	ese bits select t	line Auto Sele	om Pipeline 0	to Pipeline 14) s set, these bits		· ·
	Note T	-	not be program	nmed with a v	value of 1111b.		

Parameter 2									
n/a		Reserved	Area Up	date Pixel Rectangu	lar X-Start Position I	bits 11-8			
15	14	13	12	11	10	9 8			
		Area U	Ipdate Pixel Rectang	ular X-Start Position	bits 7-0				
7	6	5	4	3	2	1	0		
it 12		erved default value	for this bit is 0	b.					
oits 11-0	Are	a Update Pixe	l Rectangular X	K-Start Position	n bits [11:0]				

When the Update Rectangle Mode bits are set for user configured X/Y Start/End, these bits specify the X start position of the rectangular area to be updated, relative to the top left of the rotated image.

Parameter 3								
n/a			Reserved	Area Update Pixel Rectangular Y-Start Position bits 11-8				
15	14	13	12	11	10	9	8	
		Area U	pdate Pixel Rectang	ular Y-Start Position	bits 7-0			
7	6	5	4	3	2	1	0	
bit 12 bits 11-0	The Are Whi bits	a Update Pixel en the Update	start position o	Y-Start Position de bits are set f	n bits [11:0] for user configu ar area to be upo		-	

n/a Area Update Pixel Rectangular X-End Position / Horizontal Size bits 12-8											
14	13	12	11	10	9	8					
Area Update Pixel Rectangular X-End Position / Horizontal Size bits 7-0											
6	5	4	3	2	1	0					
_		14 13	14 13 12	14 13 12 11	14 13 12 11 10	14 13 12 11 10 9					

bits 12-0 Area Update Pixel Rectangular X-End Position / Horizontal Size bits [12:0] When the Update Rectangle Mode bits are set for user configured X/Y Start/End, these bits specify either the X end position or the horizontal size of the rectangular area to be updated, relative to the top left of the rotated image.

Note

Update widths and heights must be greater than 0h.

Parameter 5										
	n/a		Area	Update Pixel Recta	ngular Y-End Positio	n / Vertical Size bits	; 12-8			
15	14	13	12	11	10	9	8			
Area Update Pixel Rectangular Y-End Position / Vertical Size bits 7-0										
7	6	5	4	3	2	1	0			
bits 12-0										

Note

Update widths and heights must be greater than 0h.

8.7.31 UPD_PART (0x35 + 1 parameter)

This command issues a Partial Screen Update operation. This operation affects changed pixels only.

Parameter 1									
n/a	Reserved n/a		Display Update Waveform Mode bits 3-0						
15	14	13	12	11	10	9	8		
	Display Update Pip	eline Select bits 3-0			n/	a			
7	6	5	4	3	2	1	0		
bit 14		erved default value	for this bit is 0	b.					
bits 11-8	The	Display Update Waveform Mode Select bits [3:0] These bits are only used for Operation Modes 3 and 4. These bits select the Waveform Mode for the display update.							
bits 7-4									
	Note	9							

These bits must not be programmed with a value of 1111b.

8.7.32 UPD_PART_AREA (0x36 + 5 parameters)

This command issues an area defined Partial Screen Update operation. This operation affects changed pixels only.

Parameter 1									
n/a	Reserved n/a				Display Update Way	veform Mode bits 3-0)		
15	14	13	12	11 10 9 8					
	Display Update Pip	eline Select bits 3-0			n	ı/a	•		
7	6	5	4	3	2	1 0			
bit 14 bits 11-8	Dis _j The	e default value a play Update W use bits are only de for the displ	aveform Mode v used for Ope	e Select bits [3	3:0] 3 and 4. These	bits select the	Waveform		
bits 7-4	Disj The upd	play Update Pi se bits select th	peline Select b ne Pipeline (fro line Auto Sele	om Pipeline 0	to Pipeline 14) is set, these bits		· ·		
	Note	e							

These bits must not be programmed with a value of 1111b.

Parameter 2									
n/a			Reserved	Area Up	Area Update Pixel Rectangular X-Start Position bits 11-8				
15	14	13	12	11	10	9	8		
		Area	Update Pixel Rectangul	ar X-Start Position	bits 7-0				
7	6	5	4	3	2	1	0		
bit 12	Reserved The default value for this bit is 0b.								
bits 11-0	W] bit	nen the Update	el Rectangular X Rectangle Mod start position of age.	e bits are set	for user config				

	n/a		Reserved	Area Up	odate Pixel Rectangu	ar Y-Start Position b	oits 11-8
15	14	13	12	11	10	9	8
		Area	Update Pixel Rectangul	ar Y-Start Position	bits 7-0		
7	6	5	4	3	2	1	0
bits 11-0	Wh	en the Updat	el Rectangular Y- e Rectangle Mod start position of	e bits are set	for user config		-

Parameter 4										
n/a Area Update Pixel Rectangular X-End Position / Horizontal Size bits 12-8							ts 12-8			
15	14	13	12	11	10	9	8			
Area Update Pixel Rectangular X-End Position / Horizontal Size bits 7-0										
7	6	5	4	3	2	1	0			

bits 12-0 Area Update Pixel Rectangular X-End Position / Horizontal Size bits [12:0] When the Update Rectangle Mode bits are set for user configured X/Y Start/End, these bits specify either the X end position or the horizontal size of the rectangular area to be updated, relative to the top left of the rotated image.

Note

Update widths and heights must be greater than 0h.

Parameter 5										
	n/a		Area Update Pixel Rectangular Y-End Position / Vertical Size bits 12-8							
15	14	13	12	11	10	9	8			
Area Update Pixel Rectangular Y-End Position / Vertical Size bits 7-0										
7	6	5	4	3	2	1	0			

bits 12-0 Area Update Pixel Rectangular Y-End Position / Vertical Size bits [12:0] When the Update Rectangle Mode bits are set for user configured X/Y Start/End, these bits specify either the Y end position or the vertical size of the rectangular area to be updated, relative to the top left of the rotated image.

Note

Update widths and heights must be greater than 0h.

8.7.33 UPD_SET_IMGADR (0x38 + 2 parameters)

This command sets the Display Engine Image Buffer Start Address.

Parameter 1										
-			Image Buffer Star	t Address bits 15-8						
15	14	13	12	11	10	9	8			
	Image Buffer Start Address bits 7-0 (bits 2-0 are always 000b)									
7	6	5	4	3	2	1	0			
Parameter 2										
		n	/a			Image Buffer Start	Address bits 25-24			
15	14	13	12	11	10	9	8			
			Image Buffer Start	Address bits 23-16						
7	6	5	4	3	2	1	0			

Chapter 9 Display Memory Configurations

9.1 Introduction

The S4E5B001B00A00 controller manages its memory in 5 different areas.

• Panel Update Buffer Area

- Panel Update Buffer is used for internal update operations only. It should be not accessed by the Host.
- Panel Update Buffer data requires 1.5 bytes per pixel.
- Contains the current display pixel value which should match the state of the panel.
- Memory location starts at 0.
- Memory size requirement for the Panel Update Buffer area is: Display Height x Roundup16(Display Width x 12 ÷ 8)

• Main Image Buffer Area

- Host can consider the Main Image Buffer as the display buffer area.
- Main Image Buffer data is always stored in packed 4-bit per pixel format.
- Memory location is configurable, but should start immediately after the Panel Update Buffer Area (see Chapter 8.7.33, "UPD_SET_IMGADR (0x38 + 2 parameters)" on page 67). Do not overlap the buffer areas.
- Memory size requirement for the Main Image Buffer area is:
 - Roundup16(Display Width) x Display Height x 4 bits ÷ 8

Picture-in-Picture Image Buffer Area

- PIP image buffer is used as an overlay with transparency value select on top of the image buffer.
- PIP can be configured to be 1bpp, 2bpp or 4bpp mode, packed.
- Memory location is configurable (see Chapter 8.7.11, "PIP_ADRCFG (0x16 + 2 parameters)" on page 45).
- Transparency setup is configurable (see Chapter 8.7.10, "PIP_ENABLE (0x15 + 4 parameters)" on page 43).
- Memory size requirement for the PIP Image Buffer area is:
 - PIP Height x Roundup16(PIP Width x bpp \div 8)

Cursor Buffer Storage Area

- Cursor Buffer Area is used as an overlay with transparency value selection on top of the Main and PIP image.
- Cursor Buffer is stored in a dedicated 4K bytes of internal RAM.
- Cursor can be configured to be 1bpp, 2bpp or 4bpp mode, packed.
- Cursor location is configurable (see Chapter 8.7.15, "CSR_ADRCFG (0x1A + 1 parameters)" on page 51).

- Transparency setup is configurable (see Chapter 8.7.13, "CSR_MAINCFG (0x18 + 4 parameter)" on page 47).

- Memory size requirement for each cursor is:

Cursor Height x [2 x roundup(Cursor Width x bpp ÷ 16])

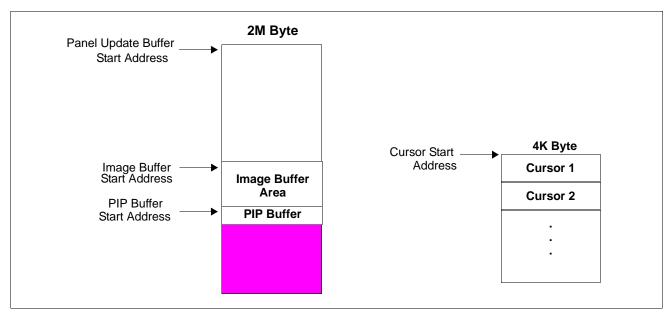


Figure 9-1: S4E5B001B00A00 Memory Area Configuration Example

9.2 Image Buffer Memory Area Setup

The S4E5B001B00A00 controller supports destructive partial region writes to the Image Buffer area. A predefined memory start region can be defined using the Host commands (see 8.6, "Command List" on page 38). The memory start region is referenced as the Image Buffer Start Address position in the memory.

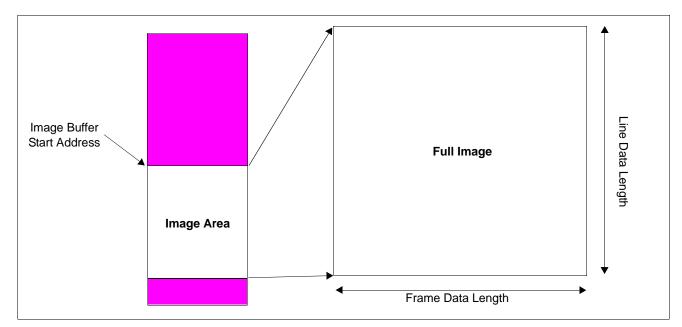


Figure 9-2: Full Image Area Setup

For any partial write using the predefined area (configured using the XStart, YStart, Width, and Height parameters), the S4E5B001B00A00 automatically calculates the start memory address position.

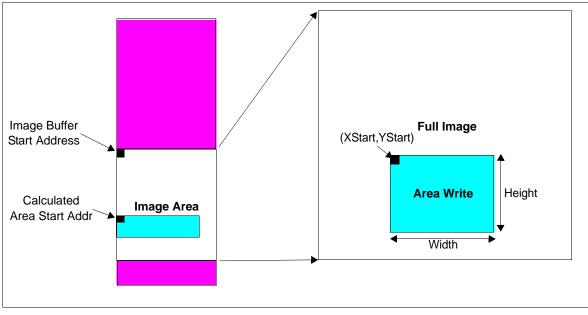


Figure 9-3: Host Memory Area Setup

9.2.1 Image Buffer Storage

Unprocessed pixel data is stored in the Image Buffer in raster sequence. The address pointer is defined by the command UPD_SET_IMGADR.

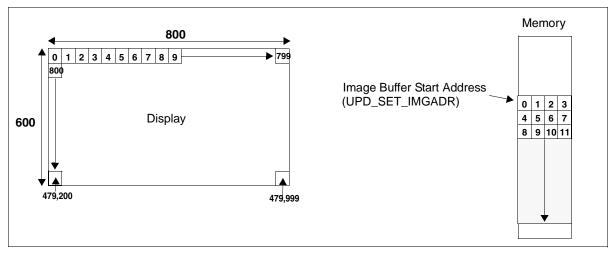


Figure 9-4: Image Buffer Storage Example - 800x600 Display Size

9.3 PIP Image Buffer Memory Area Setup

The S4E5B001B00A00 controller supports 1 PIP Image Buffer overlaid on top of Image Buffer area. Selectable transparency grey-scale value is available for 2bpp and 4bpp mode, while selectable grey-scale value is available for 1bpp mode.

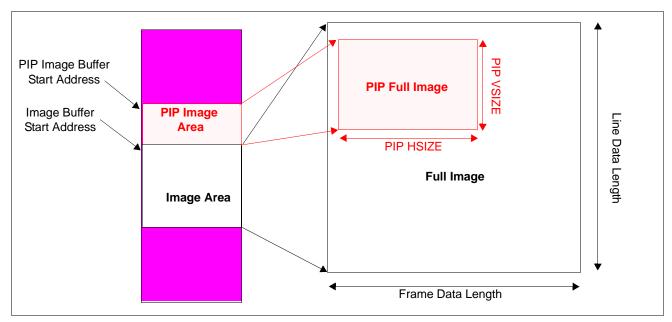


Figure 9-5: PIP Full Image Area Setup

For any partial write using the predefined area (configured using the XStart, YStart, Width, and Height parameters), the S4E5B001B00A00 automatically calculates the start memory address position.

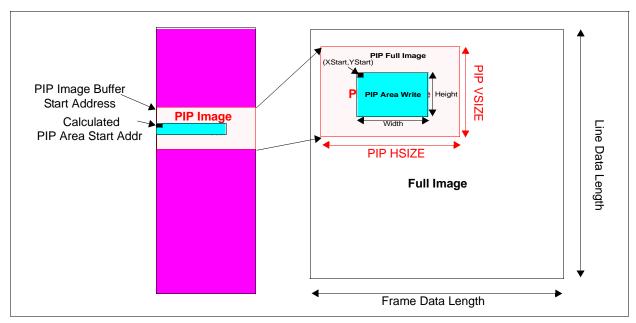


Figure 9-6: Host Memory PIP Area Setup

9.3.1 PIP Image Buffer Storage

Unprocessed pixel data is stored in the PIP Image Buffer in raster sequence. Depending on the PIP Memory Bpp setup, the storage can be 1Bpp, 2Bpp or 4Bpp.

9.4 Panel Update Buffer Memory Area Setup

The S4E5B001B00A00 requires that the Panel Update Buffer memory area is located such that it does not overlap with the Image Buffer memory area. The location for the Panel Update Buffer in memory is address 0x00000000.

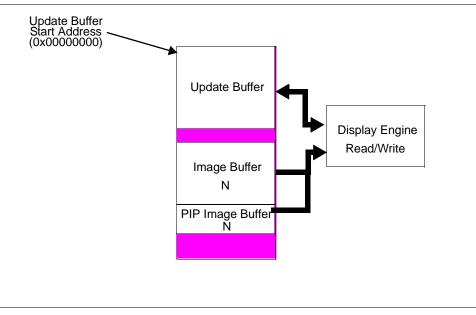


Figure 9-7: Panel Update Buffer Memory Start Address Setup

9.4.1 Panel Update Buffer Usage

The Panel Update Buffer contains the current pixel value/state of the EPD panel. It is recommended to perform initialization of the Panel Update Buffer using the following commands:

- UPD_INIT A software application should copy the last known pixel value of the panel to the Image Buffer and perform an UPD_INIT command which will synchronize the contents of the Panel Update Buffer with the panel's pixel value.
- **UPD_FULL** With waveform INIT (Waveform number 0), which will initialize the display panel to a known state. This should be used when the previous image cannot be retrieved for restoration.

The following programming flow shows how to initialize the Panel Update Buffer and synchronize it with the display contents.

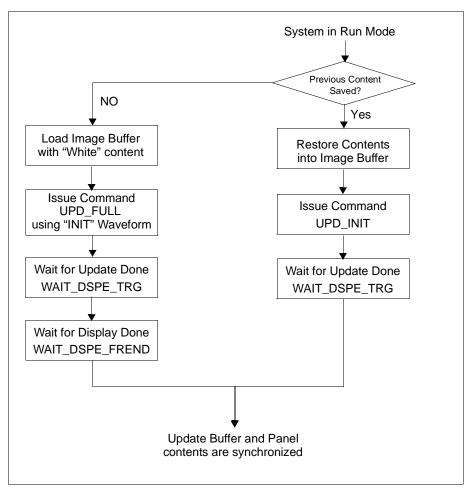


Figure 9-8: Panel Update Buffer Initialization Programming Flow

9.5 Rotation Support

- Rotation applies to the Main and PIP Image Buffer at the same time.
- Cursor Image is not rotated (see Chapter 9.8, "Cursor Relative to Panel Rotation" on page 84).

9.5.1 Rotation Introduction

Display panels are typically oriented in Landscape mode, where the Horizontal Size is larger than the Vertical Size. In this case, the display refresh occurs from Left to right and top to bottom.

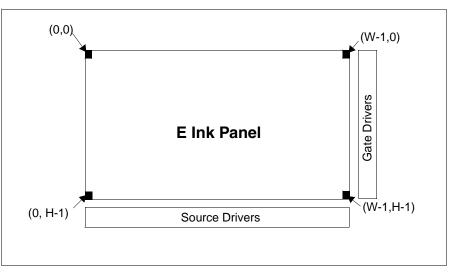


Figure 9-9: Landscape (0 Degrees) Display

The S4E5B001B00A00 supports rotation modes that allow 90°, 180°, and 270° rotation in a counter-clockwise direction. The rotation is done in hardware and is transparent to the user for all display buffer writes.

The actual address translation is performed during the Host Write and the Main and PIP image data are stored in memory in the rotated orientation.

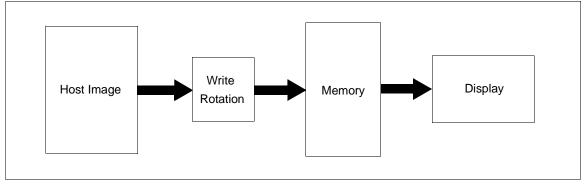


Figure 9-10: Write Rotation Flow in Hardware

Note

Memory Readback data does not support reverse-rotation.

9.5.2 90° Rotation

The following figure shows how the programmer sees a 600x800 portrait image and how the image is being displayed. The application image is written to the S4E5B001B00A00 in the following sense: A–B–C–D. The display is refreshed in the following sense: B-D-A-C.

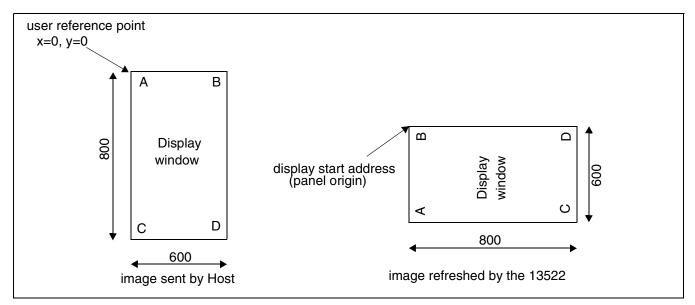


Figure 9-11: Relationship Between the Screen Image and the Image Refreshed in 90° Rotation

Programming

9.5.3 180° Rotation

The following figure shows how the programmer sees a 800x600 landscape image and how the image is being displayed. The application image is written to the S4E5B001B00A00 in the following sense: A–B–C–D. The display is refreshed in the following sense: D-C-B-A.

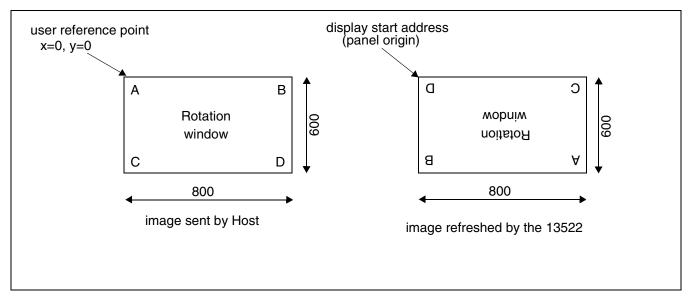


Figure 9-12: Relationship Between the Screen Image and the Image Refreshed in 180° Rotation

Programming

9.5.4 270° Rotation

The following figure shows how the programmer sees a 600x800 portrait image and how the image is being displayed. The application image is written to the S4E5B001B00A00 in the following sense: A–B–C–D. The display is refreshed in the following sense: C-A-D-B.

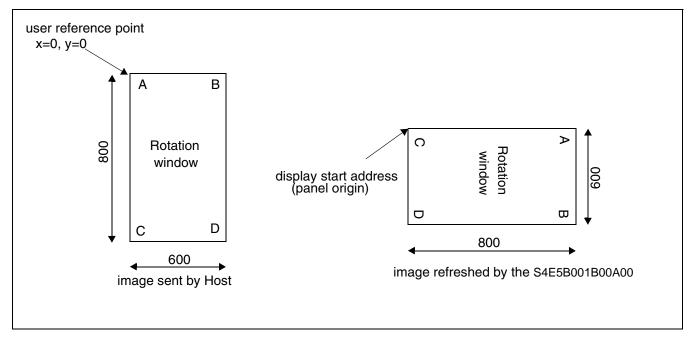


Figure 9-13: Relationship Between the Screen Image and the Image Refreshed in 270° Rotation

Programming

9.6 Window Area Position / Rotation

For a Windowed Area write operation when rotation is enabled, the X-Start, Y-Start, Width and Height settings must be specified relative to **the user's own reference point**.

9.6.1 90° Rotation

The following figure shows how the Windowed Area is rotated on the displayed image. The application Window Area is written to the S4E5B001B00A00 in the following sense: a-b-c-d.

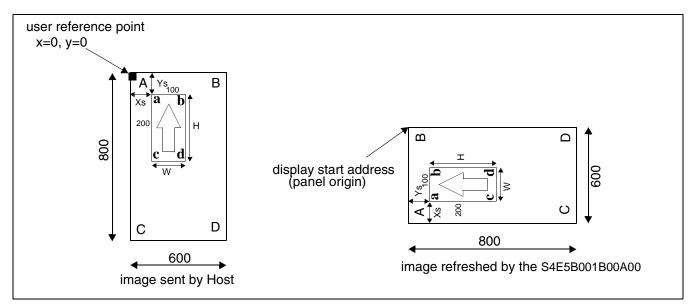


Figure 9-14: Relationship Between the Screen Window Area and the Image Refreshed in 90° Rotation

Programming

9.6.2 180° Rotation

The following figure shows how the Windowed Area is rotated on the displayed image. The application Window Area is written to the S4E5B001B00A00 in the following sense: a-b-c-d.

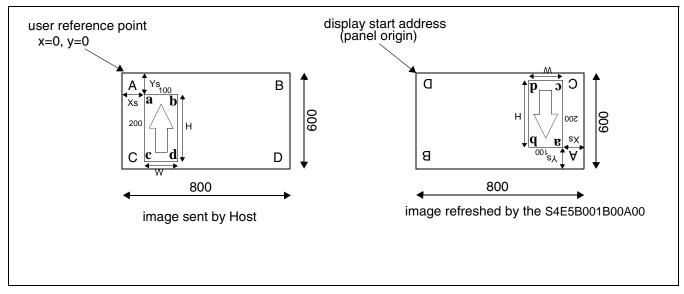


Figure 9-15: Relationship Between the Screen Window Area and the Image Refreshed in 180° Rotation

Programming

9.6.3 270° Rotation

The following figure shows how the Windowed Area is rotated on the displayed image. The application Window Area is written to the S4E5B001B00A00 in the following sense: a-b-c-d.

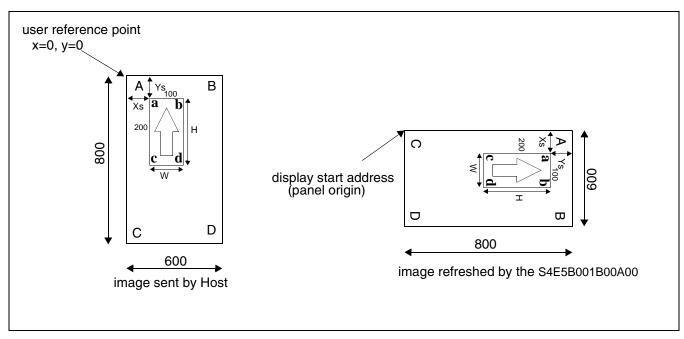


Figure 9-16: Relationship Between the Screen Window Area and the Image Refreshed in 270° Rotation

Programming

9.7 PIP Relative to Panel Rotation

For a PIP setup, X-Start, Y-Start, Width and Height settings must be specified relative to **the user's own reference point**.

9.7.1 90° Rotation

The following figure shows how the Windowed Area is rotated on the displayed image. The application Window Area is written to the S4E5B001B00A00 in the following sense: a-b-c-d.

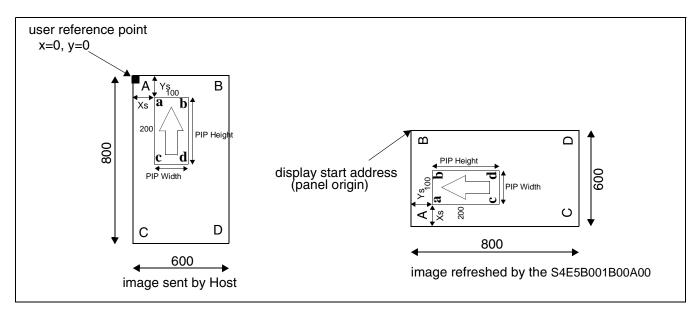


Figure 9-17: Relationship Between the Screen Window Area and the Image Refreshed in 90° Rotation

Programming

User must program the PIP and Cursor Width and Height according to their viewpoint PIP Data will be rotated accordingly.

9.7.2 180° Rotation

The following figure shows how the Windowed Area is rotated on the displayed image. The application Window Area is written to the S4E5B001B00A00 in the following sense: a-b-c-d.

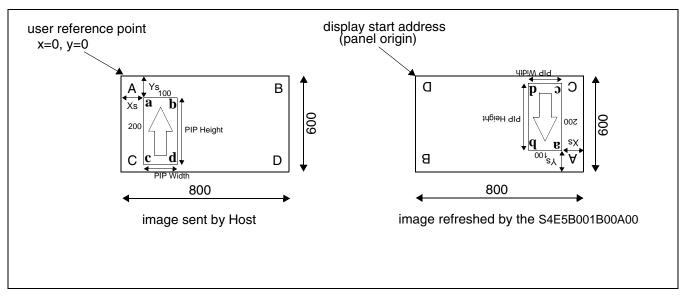


Figure 9-18: Relationship Between the Screen Window Area and the Image Refreshed in 180° Rotation

Programming

User must program the PIP Width and Height according to their viewpoint. PIP Data will be rotated accordingly.

9.7.3 270° Rotation

The following figure shows how the Windowed Area is rotated on the displayed image. The application Window Area is written to the S4E5B001B00A00 in the following sense: a-b-c-d.

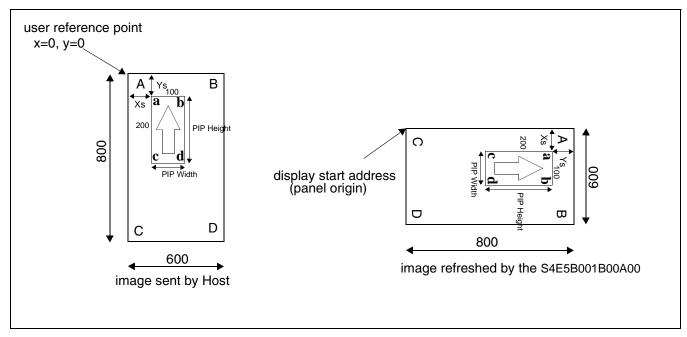


Figure 9-19: Relationship Between the Screen Window Area and the Image Refreshed in 270° Rotation

Programming

User must program the PIP Width and Height according to their viewpoint. PIP Data will be rotated accordingly.

9.8 Cursor Relative to Panel Rotation

For a Cursor setup, X-Start and Y-Start settings must be specified relative to **the user's own reference point**. The width and height, as well as the image data, remain relative to the panel origin.

9.8.1 90° Rotation

The following figure shows how the Windowed Area is rotated on the display. The cursor position is referenced to A and its corner closest to A.

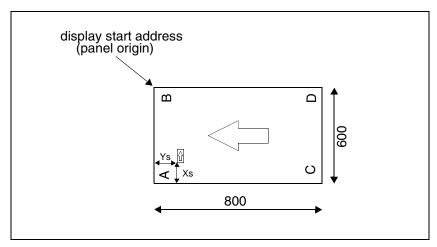


Figure 9-20: Relationship Between Cursor Position and the Image Refreshed in 90° Rotation

Programming

User must program the Cursor Width and Height according to their viewpoint. **Cursor data requires host assisted rotation support.**

9.8.2 180° Rotation

The following figure shows how the Windowed Area is rotated on the display. The cursor position is referenced to A and its corner closest to A.

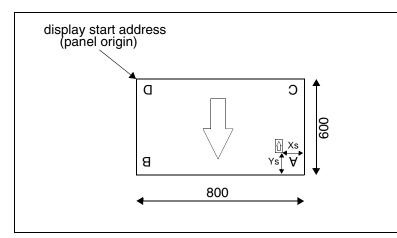


Figure 9-21: Relationship Between Cursor Position and the Image Refreshed in 180° Rotation

Programming

User must program the Cursor Width and Height according to their viewpoint. **Cursor data requires host assisted rotation support.**

9.8.3 270° Rotation

The following figure shows how the Windowed Area is rotated on the display. The cursor position is referenced to A and its corner closest to A.

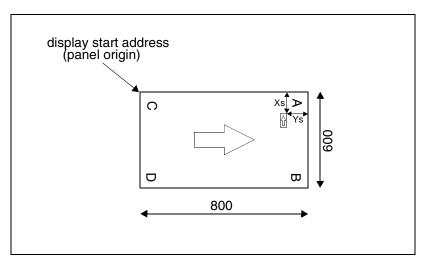
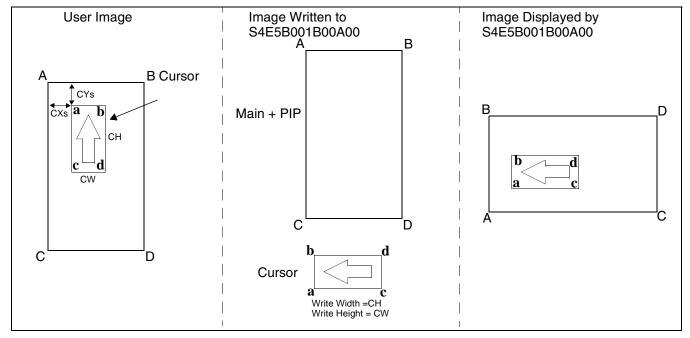



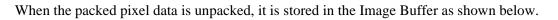
Figure 9-22: Relationship Between Cursor Position and the Image Refreshed in 270° Rotation

Programming

User must program the Cursor Width and Height according to their viewpoint. **Cursor data requires host assisted rotation support.**

9.8.4 Cursor Rotation Example

The following figure shows the relationship between the rotated Cursor and the Main and PIP Image Area


Figure 9-23: Relationship Between the User Image and the Image Displayed

Chapter 10 Host Memory Transfer Format

10.1 Host Interface Memory Transfer Mode

Data transfers from the Host interface to memory can be performed using either packed pixel mode or raw memory mode. It is recommended that image data is only programmed into the Image Buffer memory area. The Image Buffer start address is configured using the command UPD_SET_IMGADR. For further information on configuring the display memory, see Chapter 9, "Display Memory Configurations" on page 68.

Packed pixel mode "packs" multiple pixels into each 1-Nibble (4-bit) and provides a more efficient means of transferring pixel data to memory. Data transfers using raw memory mode always require 2pixels/byte for each pixel. Raw memory mode also allows memory reads. Note that pixel packing is done only for the data transfer and pixel data is stored in memory using unpacked 1-nibble format.

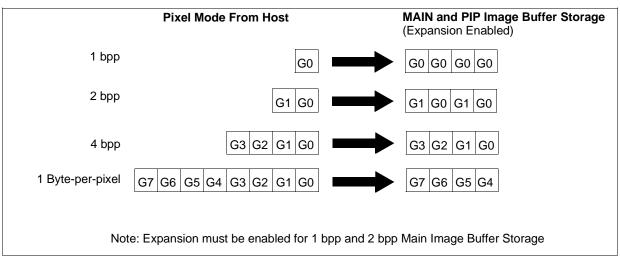


Figure 10-1: Packed Pixel Mode Data Unpacking Summary when Expansion is Enabled

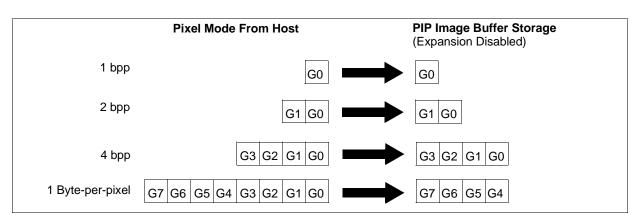


Figure 10-2: Packed Pixel Mode Data Unpacking Summary when Expansion is Disabled

10.2 Host Interface Packed Pixel Data Transfer Format Endian Formatting

Memory accesses support both Little Endian and Big Endian data transfers (see REG[015Eh] bits 1-0).

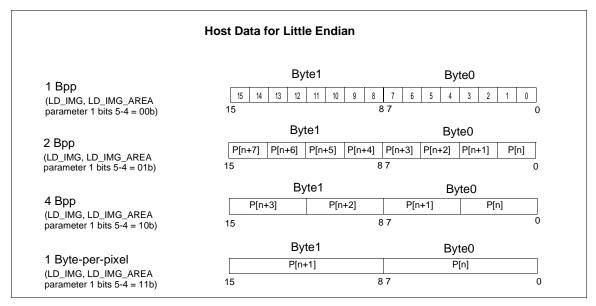


Figure 10-3: Host Interface Pixel Data Transfer Format for Little Endian

Note

- 1. For details on memory storage, see 9.2.1, "Image Buffer Storage" on page 70.
- 2. For details on Big Endian, see REG[015Eh] bits 1-0.

10.2.1 Packed Pixel Area Size Transfer Example

Note

Image data is always packed in 16-bit words with the last 16-bit word padded after Valid Data.

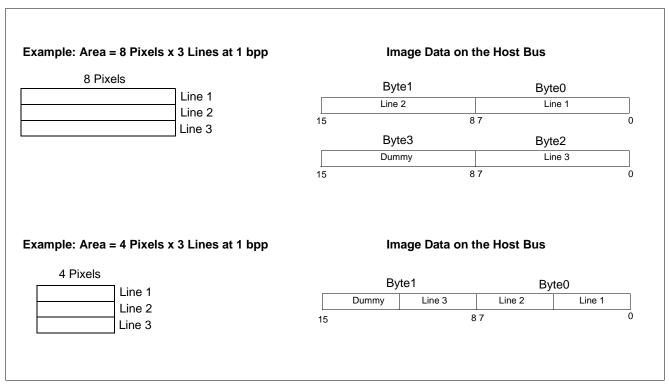


Figure 10-4: Packed Pixel Area Size Transfer Example

Chapter 11 Display Operations

11.1 Display Update: Multi-Region Pipeline Usage

The S4E5B001B00A00 Display Engine includes a high-performance 15-Region Pipeline. Each pipeline region may be assigned to:

- A group of pixels which do not overlap another pipeline region operation. The group of pixels doesn't need to be an enclosed rectangular region.
- A temperature compensated waveform Update Mode.

11.1.1 User Interface Applications with Multi-Region Pipeline

The 15-Region Pipeline is designed to provide fast response for User Interface applications while still maintaining the waveform update requirements and speed limitations. The 15-Region Pipeline is ideal for updating menu buttons, scroll bars, cursors, pen drawing, etc.

The following example shows a typical use for the 15-Region Pipeline.

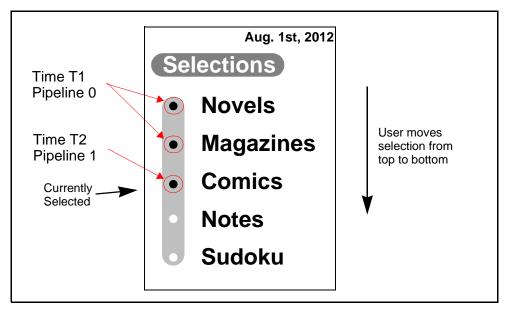
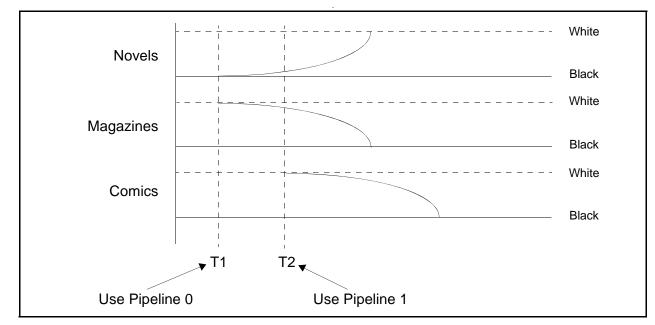



Figure 11-1: Example of a Simple Menu Button Movement

In the example, the starting position of the menu button is Novels. When the user moves the button from Novels to Magazines (T1), pipeline 0 may be initiated to update the 2 buttons to the desired state. However, this update may take up to 260ms to be completed. If the user further moves the button to Comics within the 260ms update time (T2), pipeline 1 may be assigned to the new position without waiting for the pipeline 0 to complete its assigned update operation.

The following figure shows the transition timing for the three buttons.

Figure 11-2: Transition Timing

11.1.2 Display Update Commands

There are four display update commands that may be used depending on the application requirement.

• UPD_FULL:

This command forces an update on the entire display, even if the pixels have not changed levels.

• UPD_FULL_AREA

This command forces an update on the defined rectangular area, even if the pixels have not changed levels.

• UPD_PART

This command detects pixel changes between the image buffer and the current display for the entire display. Then, it updates the pixels with changed levels. If no pixel changes are detected, no display update takes place.

• UPD_PART_AREA

This command detects pixel changes between the image buffer and the current display for the defined rectangular area. Then, it updates the pixels with changed levels. If no pixel changes are detected, no display update takes place.

11.1.3 Pipeline Usage

Pipeline Assignment

The S4E5B001B00A00 will automatically assign the highest numbered free pipeline on any update display operation. If no pipeline is available, the command will stop and report an error in the Pipeline Request Error Interrupt Raw Status bit, REG[033Ah] bit 9.

11.2 Guaranteed Display Update Operation Flow

Performing a display update operation involves 3 steps. In order to guarantee that the display update finishes completely, it is recommended that the Host software does not perform any image buffer memory write operations during Panel Update Buffer Synthesis (step 2). Otherwise, the display may be only partially updated resulting in display "tearing".

1. Host Memory Write Operation

The Host Memory Write Operation is dependent on the host software. For example, the Host may perform a multiple burst write before issuing an Update Trigger command.

2. Panel Update Buffer Synthesis

Once an Update Trigger command is issued, Panel Update Buffer Synthesis is started. This step processes the data in the Image Buffer and places the appropriate data in the Panel Update Buffer for the next display operation. The Panel Update Buffer is not directly accessed by the Host software.

Panel Update Buffer Synthesis processing time is dependent on whether Display Frame Output is already active. If Display Frame Output is not currently active, Panel Update Buffer Synthesis takes a maximum of 6ms for a 800x600 panel. If Display Frame Output is active, it takes a maximum of 2 ÷ FrameRate for a 800x600 panel.

3. Display Frame Output

Display Frame Output starts automatically right after Panel Update Buffer Synthesis completes.

The following figure shows the Guaranteed Display Update Operation Flow steps.

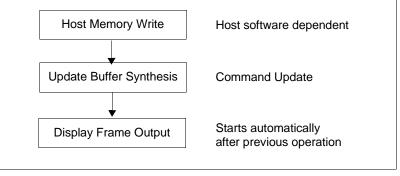


Figure 11-3: Guaranteed Display Update Operation Flow

11.3 Overlapping Display Update Operation Flow

11.3.1 Overlapping Display Updates

Under special conditions, an overlapping display update may be performed. An overlapping display update is defined as a partial display update that "overlaps" a display area which is already being updated. The following figure shows an example of this situation.

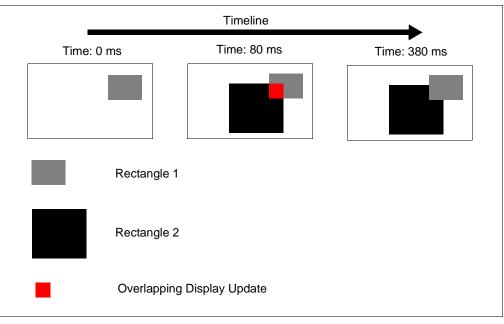


Figure 11-4: Overlapping Display Update Example

In this example, assume each display update will take 300 ms to complete. At time "0 ms", the partial display update of Rectangle 1 is initiated. At time "80 ms", a partial display update of Rectangle 2 is initiated. The area shown in "Red" is desired to have Rectangle 2 overlapping Rectangle 1. However, at time "380 ms", once the partial display update of both rectangles are completed, rectangle 1 overlaps rectangle 2. To achieve the desired overlapping, the procedure described in 11.3.2, "Overlapping Display Update Recommended Programming Flow" on page 95 must be followed.

11.3.2 Overlapping Display Update Recommended Programming Flow

When overlapping display updates are performed, the Pipeline Busy Conflict Detected Interrupt Status and Raw Status bits (REG[033Ah] bit 7 and REG[033Ch] bit 7) can be used to detect Overlapping Display Update error conditions. This interrupt is triggered for every overlapping pixel, so it is recommended to check this bit only after the Image Buffer has been fully synthesized into the Panel Update Buffer (WAIT_DSPE_TRG).

The following figure shows the recommended procedure to correct overlapping display update errors.

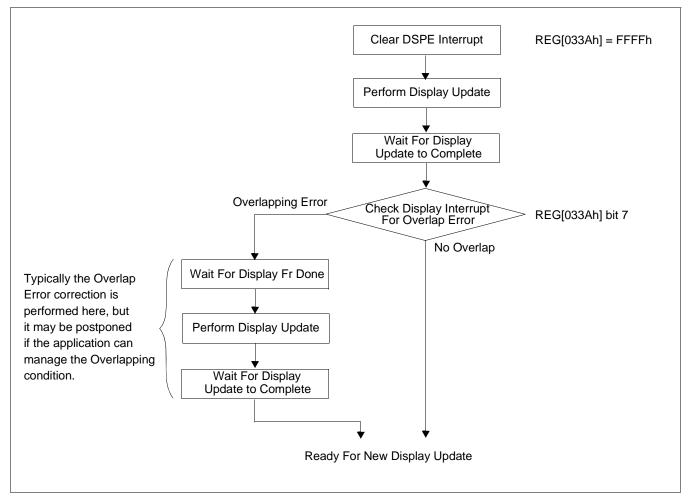
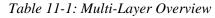



Figure 11-5: Overlapping Display Update Error Correction Programming Flow

11.4 Multi-layer Image Buffer Support

S4E5B001B00A00 controller supports 3 display layers. The following table shows an overview of each layer

Name	Layer Position	Layer Max Size	Layer Bpp Native Storage	Transparency Support	Additional Functions	Data Storage Location
Cursor Image	Top most	128x128x1bpp	Limited by Cursor Memory	1bpp, 2bpp and 4bpp transparent grey scale	0 - Replace 1 - XOR with Background 2 - ~XOR with background 3 - Invert Cursor Data	Internal Dedicated SRAM
Pip Image	Middle	Display Size	1bpp, 2bpp or 4bpp	1bpp, 2bpp and 4bpp transparent grey scale	0 - Replace 1 - XOR with Background 2 - ~XOR with background 3 - Invert PIP Data	Shared Memory
Main Image	Bottom layer	Display Size	4bpp	N.A.	NA	Shared Memory

The following diagram describe how each layer will be displayed.

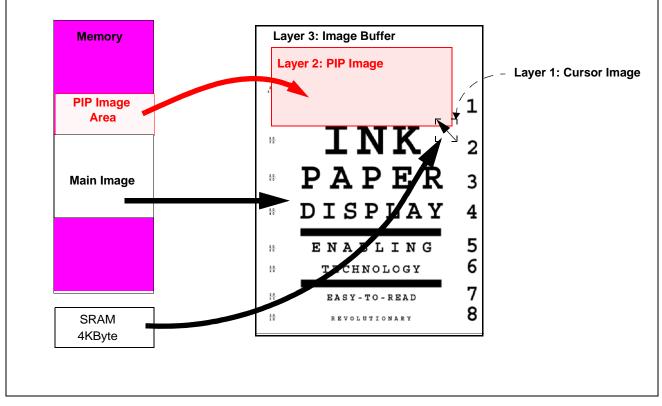


Figure 11-6: Multi-layer Image Buffer Support

11.5 PIP Window Support

A PIP Window overlays a new window (foreground image) on top of the currently displayed image (background image) without overwriting it. This function allows the background image to be restored without requiring the Host to rewrite the Image Buffer. PIP Windows are implemented using a separate PIP image buffer.

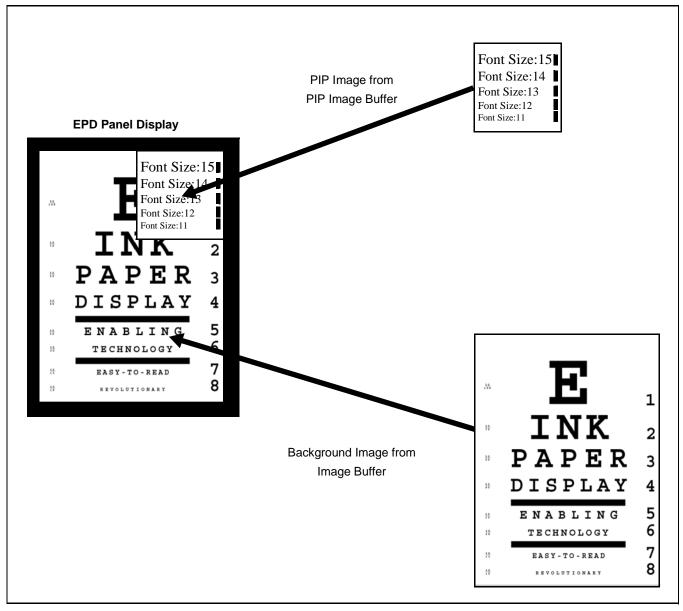


Figure 11-7: Pop-Up Window Example

11.5.1 PIP Window Implementation

The S4E5B001B00A00 can display one Main Image Buffer and one PIP Image Buffer overlaid on top of the Main Image Buffer itself.

To create a PIP Window, the following steps are recommended.

Step 1: Update the Main Image (full image update).

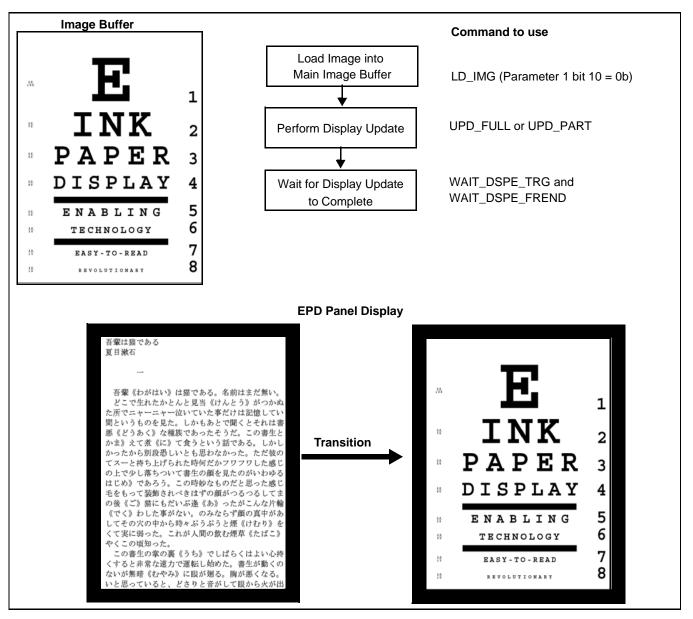


Figure 11-8: Creating a PIP Window - Step 1

Step 2: Displaying the PIP Image.

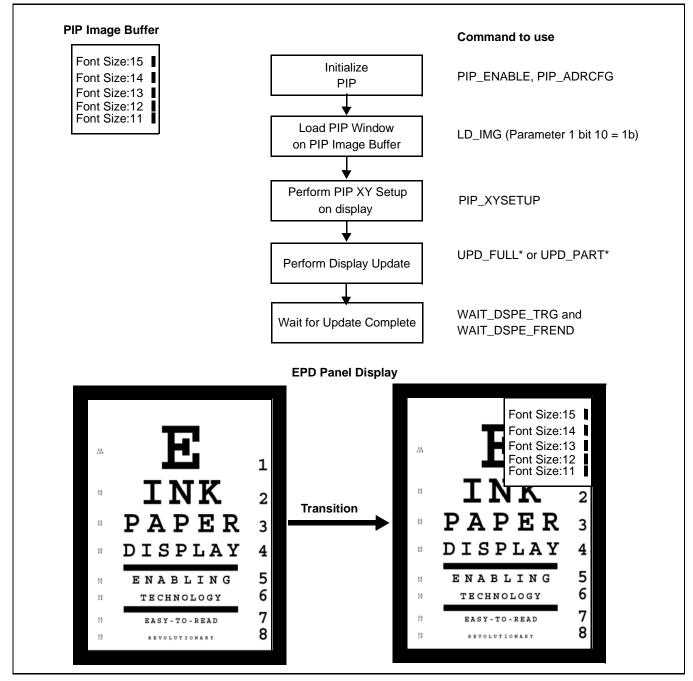


Figure 11-9: Creating a PIP Window - Step 2

Step 3: PIP Image disable.

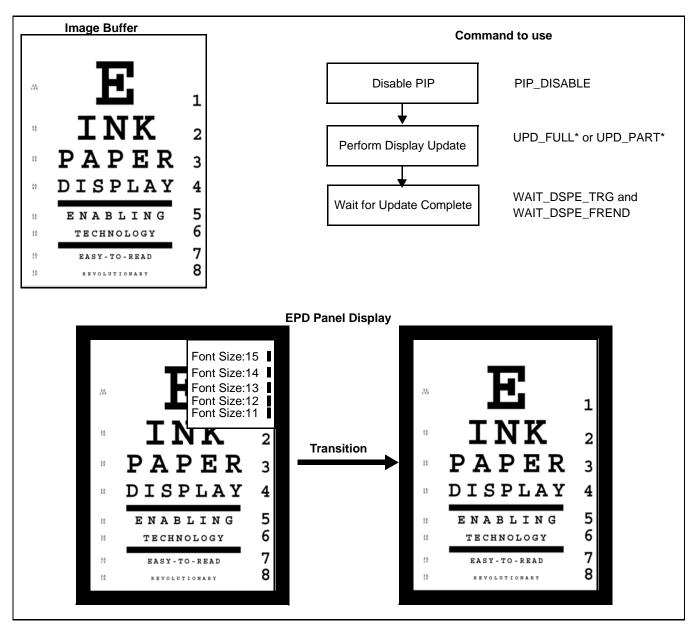


Figure 11-10: Creating a PIP Window - Step 3

11.6 Cursor Window Support

A Cursor Window overlays a new window (foreground image) on top of the currently displayed image (background image) without overwriting it. Background image includes PIP and Image Buffer display memory. This function allows the background image to be restored without requiring the Host to rewrite the background content. Cursor Windows are implemented using a separate Cursor image buffer.

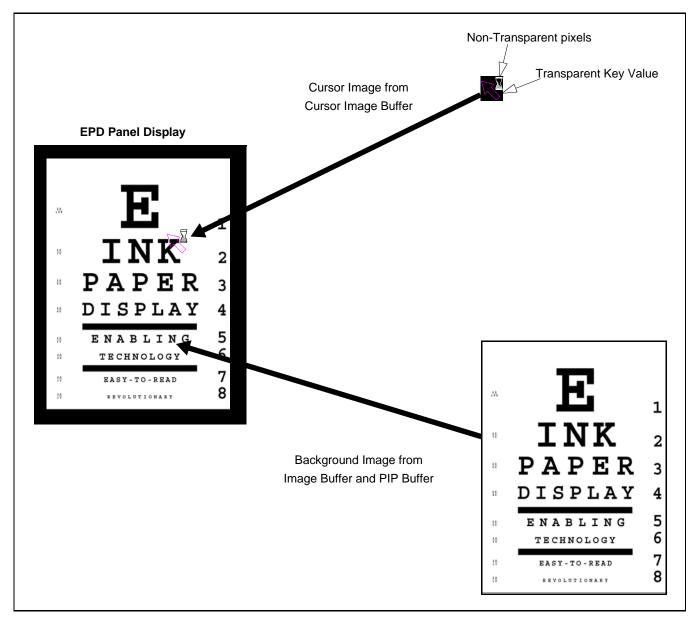


Figure 11-11: Cursor Example

11.6.1 Cursor Window Implementation

The S4E5B001B00A00 can have one Cursor Image Buffer overlaid on top of the Main and PIP Image Buffer itself.

To create a Cursor Window, the following steps are recommended.

Step 1: Update the Background Image (full image update).

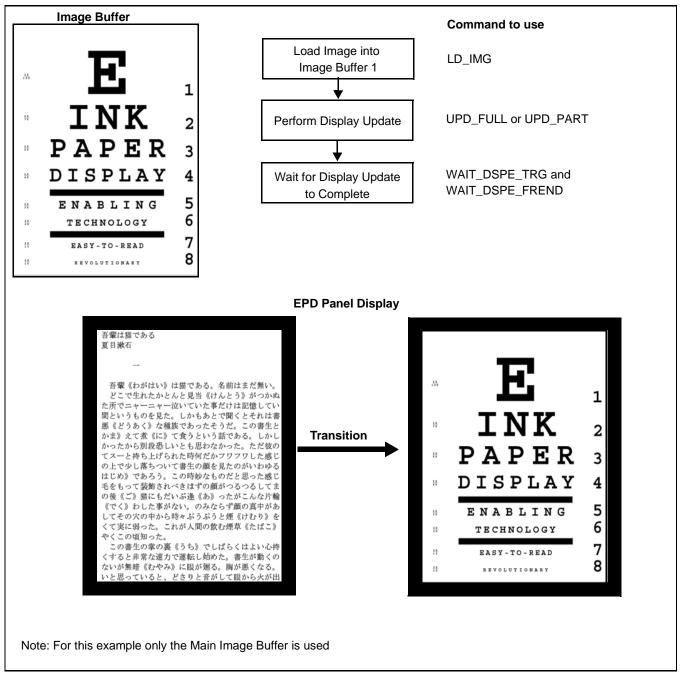


Figure 11-12: Creating a Cursor Window - Step 1

Step 2: Update the Cursor Image.

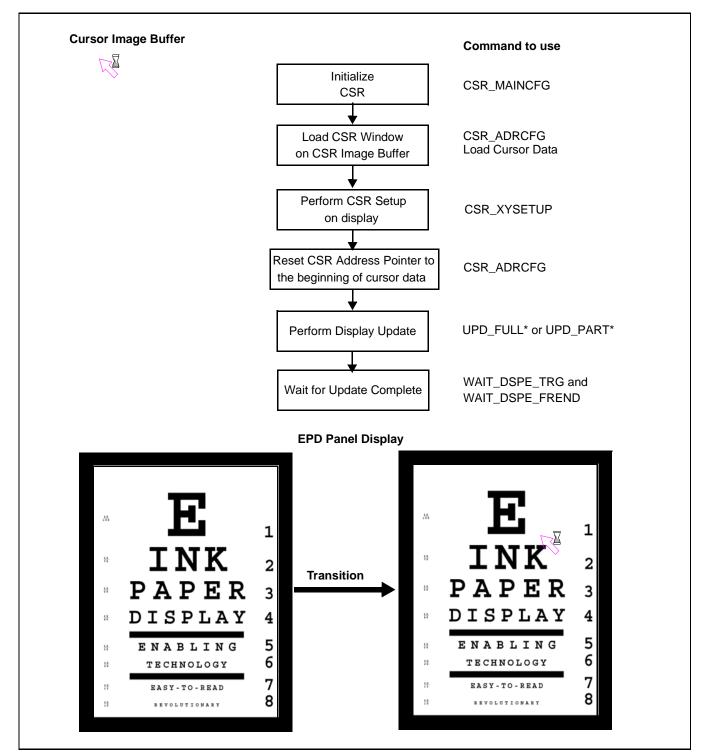


Figure 11-13: Creating a Cursor Window - Step 2

Step 3: Disabling the Cursor.

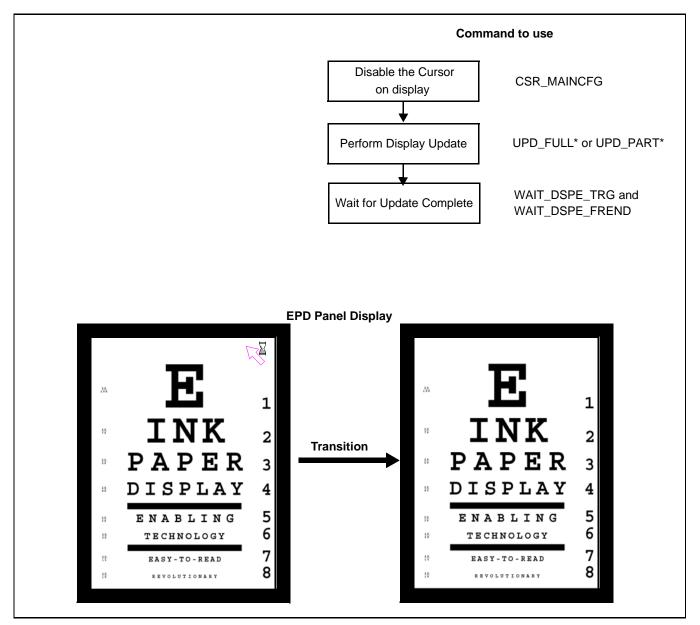
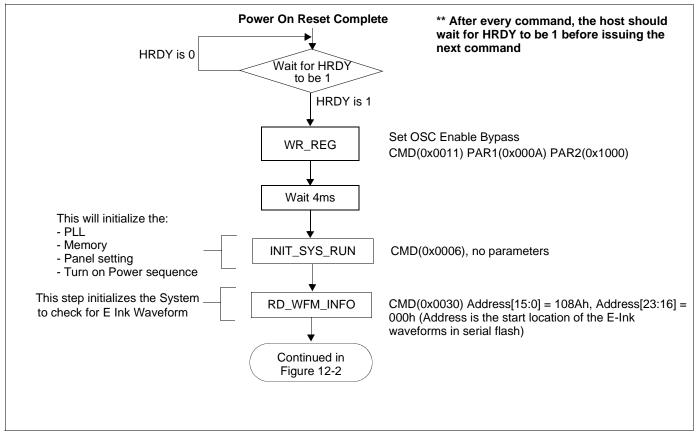
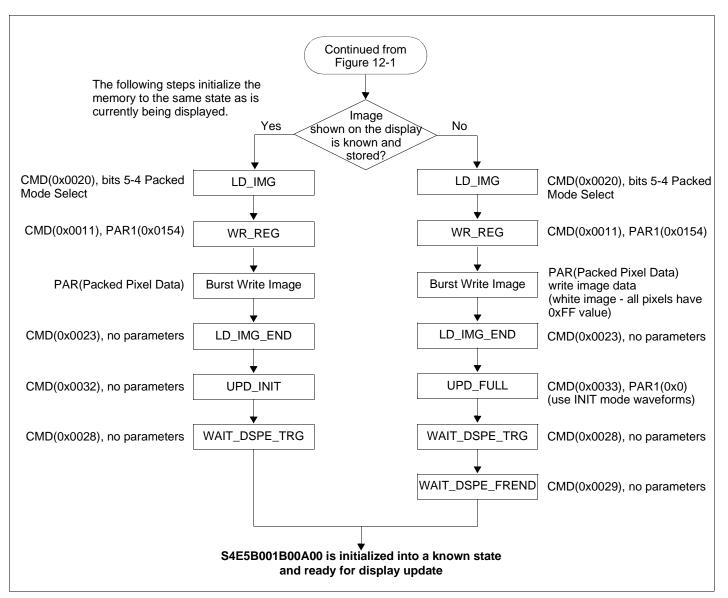


Figure 11-14: Creating a Cursor Window - Step 3


Chapter 12 Firmware Programming Guide

12.1 Command Based Programming

The following sections contain programming sequences for:


- Power On Initialize
- Standby Mode
- Sleep Mode
- Sleep Mode
- Run Mode
- Host Packed Pixel Write to Main or PIP with Transparency
- Host Area Defined Packed Pixel Write to Main or PIP
- Full Image Dump (16-bit Host Interface only)
- Manual Trigger to Thermal Sensor for Single Temperature Read
- Display Engine Panel Update Buffer Initialize with Image Buffer
- Display Engine Full Display Update Full Image Size Sweep
- Display Engine Partial Display Update Full Image Size Sweep
- Display Engine Partial Display Update User Defined Area Sweep
- Display Engine Picture-In-Picture Setup
- Display Engine Picture-In-Picture Position Change
- Display Engine Cursor Setup
- Display Engine Cursor Position Change

12.1.1 Power On Initialize

The Serial Flash has been previously programmed with the Epson Instruction code with and E-Ink Waveforms.

Figure 12-1: Power On Initialize Programming Flow (1 of 2)

Figure 12-2: Power On Initialize Programming Flow (2 of 2)

12.1.2 Standby Mode

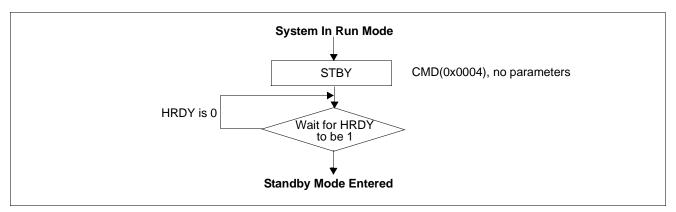


Figure 12-3: Standby Mode Programming Flow

12.1.3 Sleep Mode

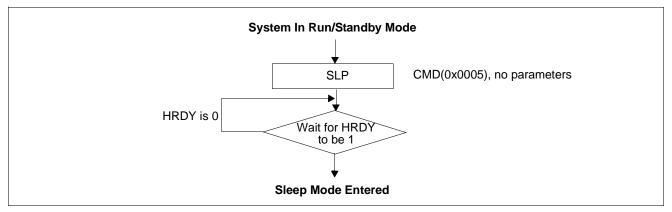


Figure 12-4: Sleep Mode Programming Flow

12.1.4 Run Mode

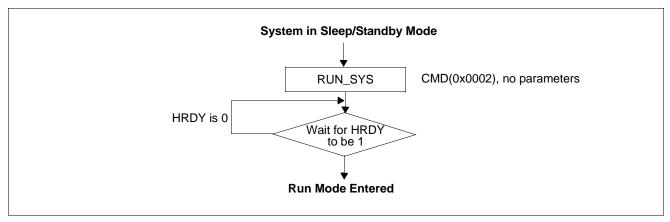
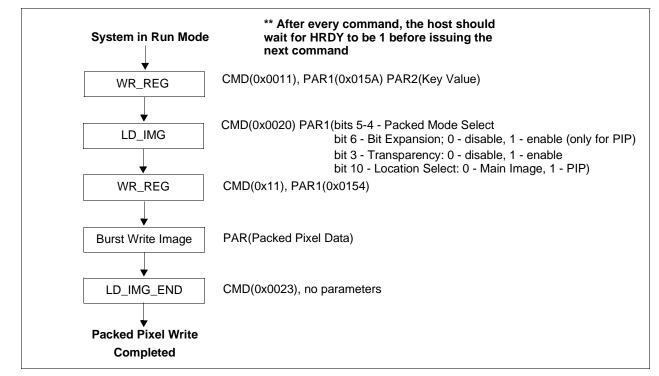
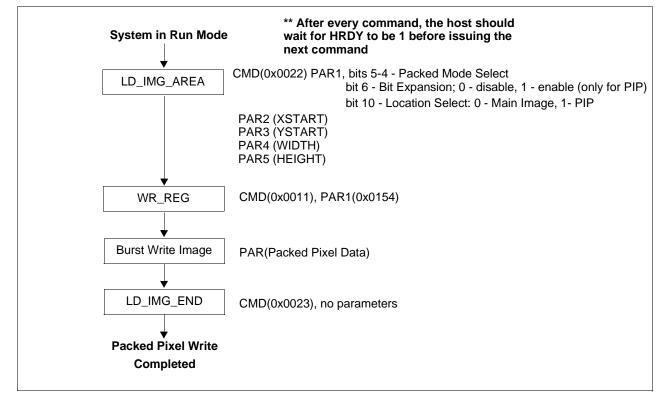




Figure 12-5: Run Mode Programming Flow

12.1.5 Host Packed Pixel Write - to Main or PIP with Transparency

Figure 12-6: Host Packed Pixel Write Programming Flow

12.1.6 Host Area Defined Packed Pixel Write - to Main or PIP

Figure 12-7: Host Area Defined Packed Pixel Write Programming Flow

12.1.7 Manual Trigger to Thermal Sensor for Single Temperature Read

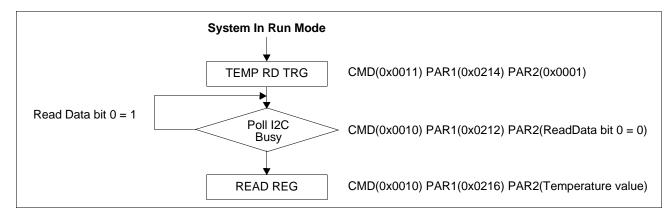


Figure 12-8: Manual Trigger Thermal Sensor for Single Temperature Read Programming Flow

12.1.8 Full Image Buffer Dump

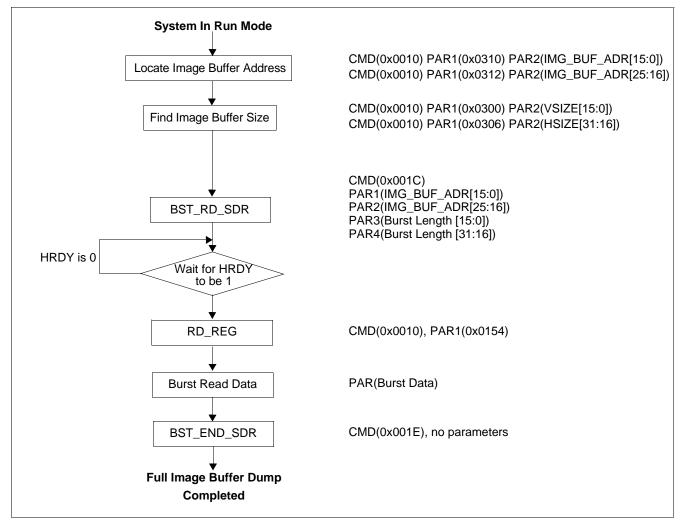
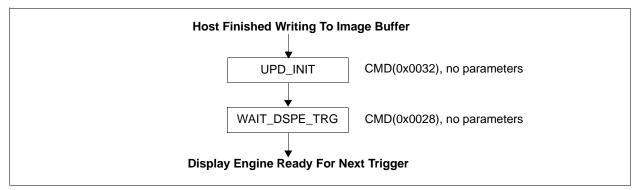



Figure 12-9: Full Image Buffer Dump Programming Flow

Note

Memory read is not supported for Intel 80 8-bit Host Interface.

12.1.9 Display Engine - Panel Update Buffer Initialize with Image Buffer

This sequence will initialize the panel update buffer without display output.

Figure 12-10: Display Engine - Panel Update Buffer Initialize with Image Buffer Programming Flow

12.1.10 Display Engine - Full Display Update - Full Image Size Sweep

This operation forces a display update for every pixel within the defined display size, regardless of whether the pixel data has changed.

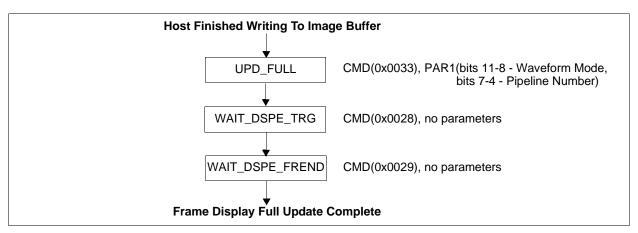
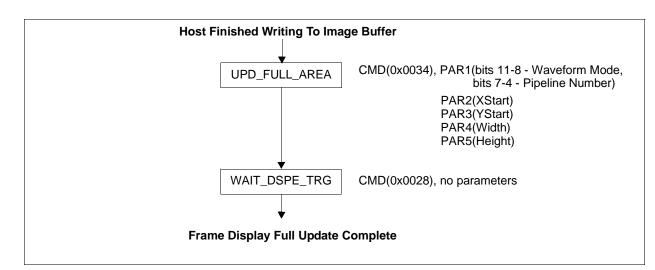



Figure 12-11: Display Engine - Full Display Update - Full Image Size Sweep Programming Flow

12.1.11 Display Engine - Full Display Update - User Defined Area Sweep

This operation forces a display update for every pixel within the user defined area, regardless of whether the pixel data has changed.

Figure 12-12: Display Engine - Full Display Update - User Defined Area Sweep Programming Flow

12.1.12 Display Engine - Partial Display Update - Full Image Size Sweep

This operation performs a display update for every pixel with changed pixel data within the defined display size.

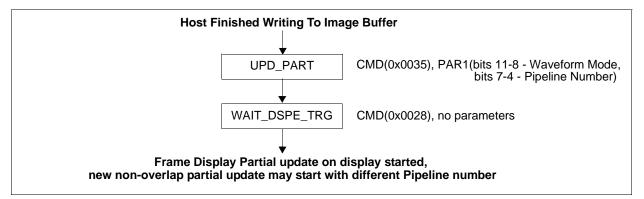


Figure 12-13: Display Engine - Partial Display Update - Full Image Size Sweep Programming Flow

12.1.13 Display Engine - Partial Display Update - User Defined Area Sweep

This operation performs a display update for every pixel with changed pixel data within the user defined area.

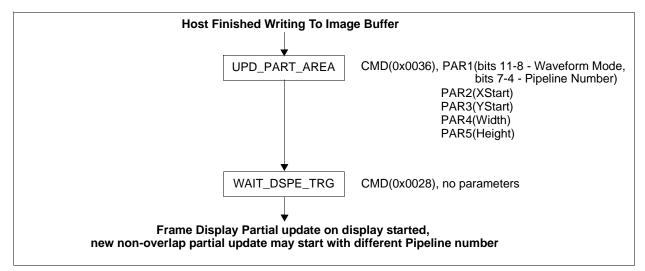


Figure 12-14: Display Engine - Partial Display Update - User Defined Area Sweep Programming Flow

12.1.14 Display Engine - Picture-In-Picture Setup

This Setups and enable/disable the Picture in Picture (PIP) feature.

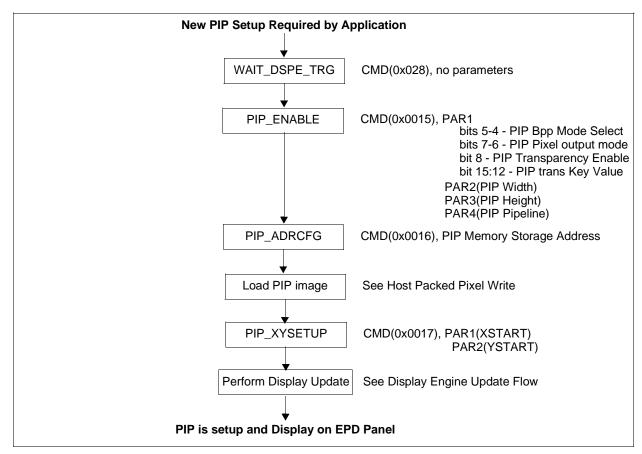
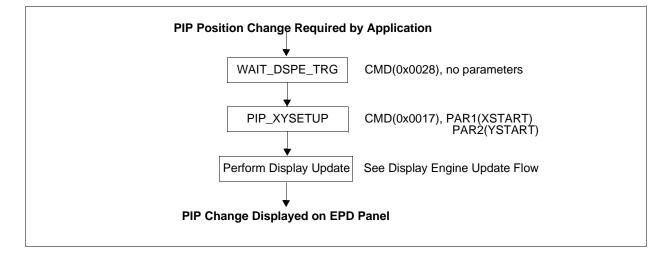



Figure 12-15: Display Engine - Picture-In-Picture Setup

12.1.15 Display Engine - Picture-In-Picture Position Change

This change the position of the Picture in Picture (PIP) on the EPD panel.

Figure 12-16: Display Engine - Picture-In-Picture Position Change

12.1.16 Display Engine - Cursor Setup

This Setups and enable/disable the Cursor feature.

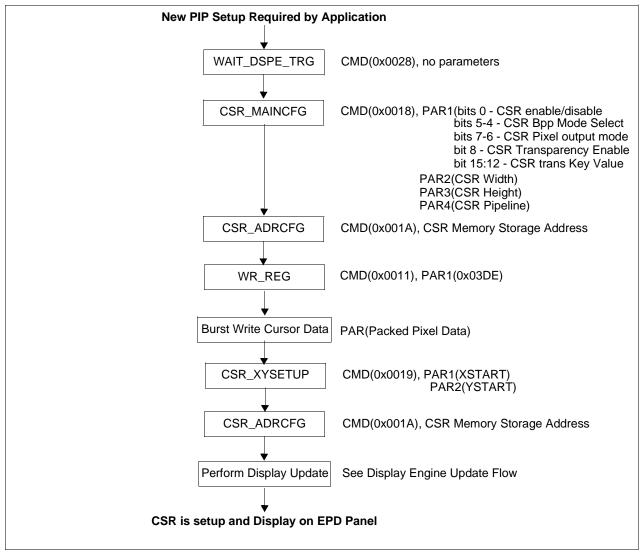
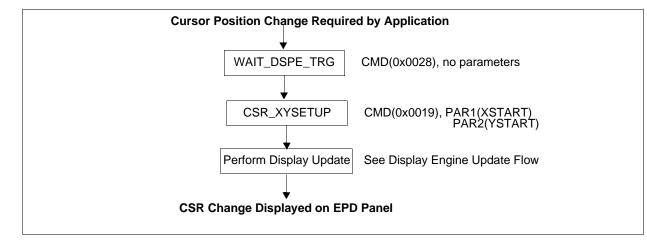



Figure 12-17: Display Engine - Cursor Setup

12.1.17 Display Engine - Cursor Position Change

This change the position of the Cursor On the EPD panel

Figure 12-18: Display Engine - Cursor Position Change

Chapter 13 Auto Waveform

13.1 Introduction

E Ink has developed several waveforms which are optimized to efficiently display different grey-tones in the shortest possible time. Auto Waveform will automatically select the fastest waveform to use based on pixel transition required.

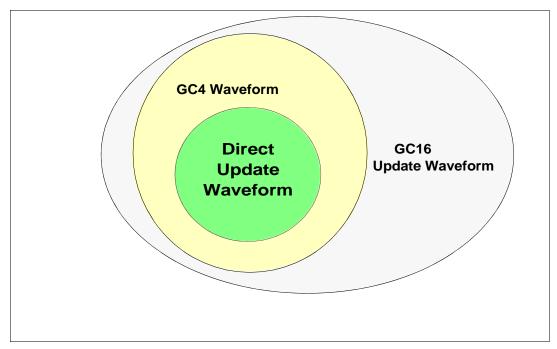


Figure 13-1: Waveform Example Sets

In the above example, the GC16 Waveforms can be used for different grey-toned pixel updates and require approximately 780 ms for the pixel update to complete. The GC4 Waveform is able to perform a pixel transition for 4 greytoned pixel update at around 500ms. The Direct Update Waveform will convert any grey-toned pixel to a black or white level in approximately 260 ms.

13.2 Waveform Modes

E Ink waveforms are optimized for each specific panel model. For details on the specific waveforms for each panel, contact your E Ink representative.

The following table lists some standard waveform modes that are currently available from E Ink.

Note

The waveform specification is only available to end customers who have entered a non-disclosure agreement with E Ink. Contact E Ink for accurate information on Target Update Times.

Mode	Mode	Туре	Gray Levels	Transition Appearance	Ghosting	Usage	Approximate Target Update Time
INIT	0	Global	White only	High Flash	n/a	Display Initialization	seconds
DU	1	Local	$8 \rightarrow$ Black and White	No Flash	Low	Monochrome menu, text input, touch screen/pen input	< 0.5 sec
GU	2	Local	8	Low Flash	Medium	High quality images and anti-aliased text	< 1 sec
GC	3	Global	8	High Flash	Low	High quality images and anti-aliased text	< 1 sec

 Table 13-1: 3-Bit Typical Performance

Table 13-2: 4-Bit Typical Performance

Mode	Mode	Туре	Gray Levels	Transition Appearance	Ghosting	Usage	Approximate Target Update Time	
INIT	0	Global	White only	High Flash	n/a	Display Initialization	seconds	
DU	1	Local	$16 \rightarrow$ Black and White	No Flash	Low	Monochrome menu, text input, touch screen/pen input	< 0.5 sec	
GC16	2	Global	16	High Flash	Low	High quality images and anti-aliased text	< 1 sec	
GC4	3	Global	$\begin{array}{c} 4 \rightarrow 4 \\ 16 \rightarrow 4 \end{array}$	High Flash	Low	4 gray-scaled images and anti-aliased text	< 1 sec	

Chapter 14 Timing Requirements

14.1 Timing Requirements For Reset

The Command Interface automatically accesses the serial flash interface when Reset is deasserted. Therefore, the S4E5B001B00A00 must have a stable clock before Reset is deasserted.

The following Reset timing is required.

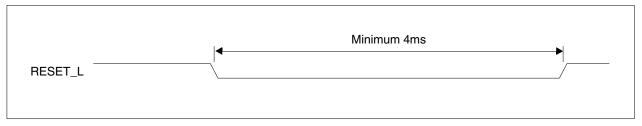


Figure 14-1: Reset Timing Requirement for Input Clock From Oscillator

The following programming flow is recommended.

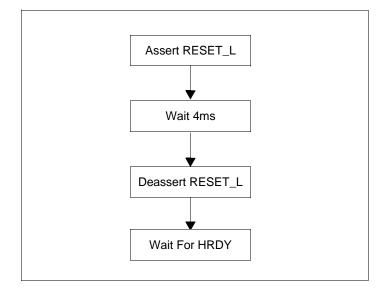


Figure 14-2: Reset Timing Requirement Programming Flow from Power-Up

14.2 Timing Requirements for Initialization or Exiting from Sleep Mode

When the S4E5B001B00A00 is initialized or exits sleep mode, it requires a stable clock before any new cycles can be executed.

The following timing is required.

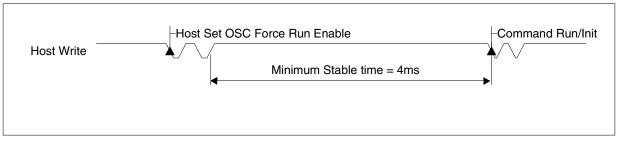


Figure 14-3: Initializing or Exiting Sleep Timing Requirement for Input Clock From Oscillator

The following programming flow is recommended.

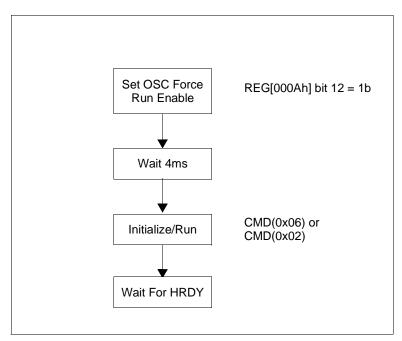
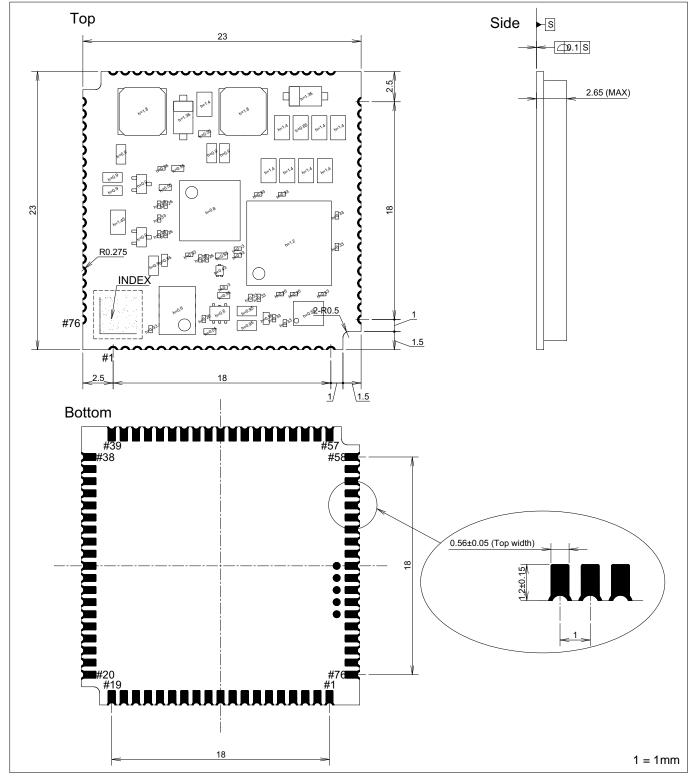



Figure 14-4: Initializing or Exiting Sleep Programming Flow for Input Clock From Oscillator

Chapter 15 Mechanical Data

Chapter 16 Soldering, Handling and Storage Recommendations

The S4E5B001B00A00 EPD Controller Module is not intended for use in systems used for life support or similar devices where the failure or malfunction of the product can be reasonably expected to significantly affect the health or safety of users.

16.1 Recommended Reflow Profile

This module should be assembled with IR reflow, Full convection, or IR/Convection.

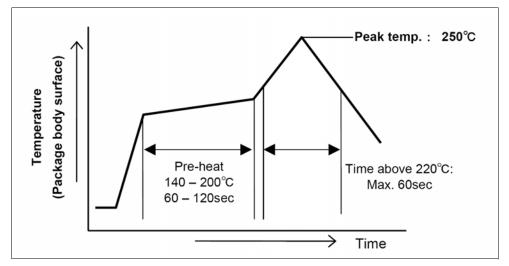


Figure 16-1: Recommended Reflow Profile

16.1.1 Repeat Reflow Soldering

The maximum allowable reflow soldering processes allowed for S4E5B001B00A00 EPD Controller Module is two times.

16.1.2 Baking Conditions

When packages exceed the storage conditions after opening the dry pack, please bake them according to the following conditions:

Temperature	Time	Number of Times	
125 ±5°C	20 ~ 36 hours	2	

Storage conditions from the baking to the reflow soldering are the same as Chapter 16.2.2, "Storage" on page 128.

16.1.3 Hand Soldering

Hand soldering is possible.

Table 16-2: Recommended Hand Soldering Conditions

Temperature	Time	Number of Times	
≤350°C	≤5 seconds	1 time / lead	

16.1.4 Pb-Free Soldering Paste

Use of "No Clean" soldering paste is strongly recommended, as it does not require cleaning after the soldering process.

16.1.5 Cleaning

In general, cleaning the S4E5B001B00A00 EPD Controller Module is not recommended. Residuals under the module cannot be easily removed with any cleaning process.

- Cleaning with water can lead to capillary effects where water is absorbed into the space between the host board and the module. The combination of soldering flux residuals and encapsulated water could lead to short circuits between neighboring pads. Water could also damage any stickers or labels.
- Cleaning with alcohol or a similar organic solvent will likely flood soldering flux residuals under the module, which is not accessible for post-washing inspection. The solvent could also damage any stickers or labels.
- Ultrasonic cleaning could damage the module permanently.

The best approach is to consider using a "no clean" soldering paste and eliminate the post-soldering cleaning step.

16.1.6 Visual Inspection

The Visual Inspection Quality Level is ANSI/ASQC Z1.4 Normal Inspection Level AQL= 0.65%. After soldering the S4E5B001B00A00 EPD Controller Module to the host board, consider visual inspection to check the following:

- Proper alignment and centering of the module over the pads.
- Proper solder joints on all pads.
- Excessive solder or contacts to neighboring pads or vias.

Defect	Description of Defect
Device	Wrong part number
Height of Device	The installed height of the device exceeds specification
Orientation of Component	The device pin orientation is incorrect
	 The device is rotated 90° on the solder pad
Rotation of Component	90° Rotation
Device Mounting	 X-Direction: ½ or more of the pin is not located on the land B < A x 2/3 Y-Direction: any of the pin is not located on the land I = 0 Leaded Parts (X-Direction): ½ or more of the pin width is not located on the land I = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1
Open / Short	Open or shorted pin

Table 16-3: Visual Inspection

Defect	Description of Defect
Solder Bridge	Solder is bridging between pins
	Bonding of solder within the exclusion areaSolder flux in the land area is okay.
Solder Fillet	Solder fillet is not formed
Solder Ball	 Solder is bonded between pins Solder balls of 0.1mm diameter or more are bonding If the solder ball is bonded and less than 0.1mm it is okay (within spec)
Foreign Material on Solder Pad	 Foreign material is thicker than the solder mask thickness

Table 16-3: Visual Inspection

16.1.7 Rework

The S4E5B001B00A00 EPD Controller Module can be unsoldered from the host board. Use of a hot air rework tool and hot plate for pre-heating from underneath is recommended. Avoid overheating.

Note

- 1. Do not re-solder a module which has previously been removed. Such action will terminate warranty coverage.
- 2. Never attempt a rework on the S4E5B001B00A00 EPD Controller Module itself, e.g. replacing individual components. Such actions will terminate warranty coverage.

16.2 Handling and Storage

16.2.1 Handling

The S4E5B001B00A00 EPD Controller Modules are designed and packaged to be processed in an automated assembly line. When mounting the S4E5B001B00A00 on a pcb, it is recommended to pick the part up by the semiconductor near the center of the module.

Note

The S4E5B001B00A00 EPD Controller Modules contain highly sensitive electronic circuitry. Handling without proper ESD protection may destroy or damage the module permanently.

16.2.2 Storage

	Conditions	Time
Before opening pack	≤30°C 85% RH	1 year
After opening pack	125 ±5°C	20 ~ 36 hours
After baking	≤30°C 60% RH	7 days (168 hours)

Table 16-4: Recommended Storage Conditions

Chapter 17 References

The following documents contain additional information related to the S4E5B001B00A00. Document numbers are listed in parenthesis after the document name. All documents can be found at the Epson Research and Development Website at **www.erd.epson.com**.

• S4E5B001B00A00 Product Brief (X93A-C-002-xx)

Appendix A Registers

The S4E5B001B00A00 has an internal register set which is used for configuration and status reporting. All necessary functionality can be controlled through the command interface discussed in Chapter 8, "Host Interface" on page 32.

This section discusses how and where to access the S4E5B001B00A00 registers. It also provides detailed information about the layout and usage of each register.

A.1 Register Access

The S4E5B001B00A00 registers are 16-bit wide. They can be accessed using the Command Interface

A.1.1 Register Access using Command Interface

Registers may be accessed using the command interface with the following sequences.

For single 16-bit register reads:

Tx Count	16-bit Indirect Host
0	Write Code[15:0] <= 0x0010
1	Write Register Address[15:0]
2	Read

Table A-1: Register Read Sequence

For single 16-bit register writes:

 Table A-2: Register Write Sequence

Tx Count	16-bit Indirect Host
0	Write Code[15:0] <= 0x0011
1	Write Register Address[15:0]
2	Write

Note

Only single register accesses are supported (i.e. register address is not auto incremented to the next register address).

A.2 Register Set

The S4E5B001B00A00 registers are listed in the following table.

Register	Pg	Register	Pg
REG[0002h] Product Code Register	132	REG[000Ah] System Status Register	132
REG[0154h] Host Memory Access Port Register	134	REG[015Ah] Host Packed Write Transparency Register	134
REG[015Eh] Host Memory Access Pixel Swap Configuration	Register 135	REG[0240h] Interrupt Raw Status Register	136
REG[0242h] Interrupt Masked Status Register	137	REG[0244h] Interrupt Control Register	138
REG[0250h] GPIO Configuration Register	139	REG[0252h] GPIO Status/Control Register	139
REG[0254h] GPIO Interrupt Enable Register	140	REG[0256h] GPIO Interrupt Status Register	141
REG[02AEh] Command Interrupt Control	141	REG[033Ah] Display Engine Interrupt Raw Status Register	142
REG[033Ch] Display Engine Interrupt Masked Status Registe	r 143	REG[033Eh] Display Engine Interrupt Enable Register	144
REG[03DEh] Cursor Memory Access Port Register	144		

Table A-3: S4E5B001B00A00 Register Set

Note

All other register addresses should not be written.

A.3 Register Descriptions

REG[0002h] Default = 004	Product Code 4Dh	e Register					Read Only			
	Product Code bits 15-8									
15	14	13	12	11	10	9	8			
	Product Code bits 7-0									
7	6	5	4	3	2	1	0			

bits 15-0

Product Code bits [15:0] (Read Only) These bits indicate the product code.

The product code for the S4E5B001B00A00 is 004Dh.

Default = 000	00h						Read/Write	
Reserved	Power Management Busy Status (RO)	n/a	OSC Cell Force Run Enable	Power Save Status bits 1-0		Memory Self Refresh Mode Status (RO)	Power Pin Sequence Status (RO)	
15	14	13	12	11	10	9	8	
I2C Busy Status (RO)	SPI Busy Status (RO)	Host Interface Busy Status (RO)	Memory Controller Busy Status (RO)	Host Memory Access Busy Status (RO) Display Engine Busy Status (RO)		Memory Initialized (RO)	PLL Lock (RO)	
7	6	5	4	3	2	1	0	
bit 14	Thi: Wh	Power Management Busy Status (Read Only) This bit indicates the status of the Power Management logic. When this bit = 0b, the Power Management logic is not busy. When this bit = 1b, the Power Management logic is busy.						
bit 12		C Cell Force R s bit configures		to always run	even on powe	er save mode w	vith PLL off.	
bits 11-10		ver Save Status ese bits indicate		ve status of the	e S4E5B001B0	00A00.		
		,	Table A-4: Pov	а а, ,				

REG[000Ah] bits 11-10	Power Save Status
00b	Un-initialized System
01b	Run Mode
10b	Standby Mode
11b	Sleep Mode

bit 9	Memory Self Refresh Mode Status (Read Only) This bit indicates whether the memory controller is in self refresh mode. Self refresh mode is controlled using the Memory Enter Self Refresh Trigger bit (REG[0104h] bit 0) and the Exit Self Refresh Trigger bit (REG[0104h] bit 1). When this bit = 0b, the memory controller is not in self refresh mode. When this bit = 1b, the memory controller is in self refresh mode.
	Note The memory must not be accessed while it is in self refresh mode. To read or write to memory, self refresh mode must be exited, REG[0104h] bit 1 = 1b.
bit 8	Power Pin Sequence Status (Read Only) This bit provides the status of the pin sequence. When this bit = 0b, it is currently in a power off state. (default) When this bit = 1b, it is currently in a power on state.
bit 7	I2C Busy Status (Read Only) This bit indicates whether the I2C interface is busy. When this bit = 0b, the I2C interface is idle (not busy). When this bit = 1b, the I2C interface is busy.
bit 6	SPI Busy Status (Read Only)This bit indicates whether the SPI interface is busy.When this bit = 0b, the SPI interface is idle (not busy).When this bit = 1b, the SPI interface is busy.
bit 5	Host Command Interface Busy Status (Read Only) This bit indicates whether the Host Command interface is busy. When this bit = 0b, the Host Command interface is idle (not busy). When this bit = 1b, the Host Command interface is busy.
bit 4	Memory Controller Busy Status (Read Only) This bit indicates whether the memory controller is busy. When this bit = 0b, the memory controller is idle (not busy). When this bit = 1b, the memory controller is busy.
bit 3	Host Memory Access Busy Status (Read Only) This bit indicates the status of the current Host Memory Access. For write accesses, this bit remains at 1b until the memory operation is complete. For read accesses, this bit remains at 1b until the read data has been transferred into the FIFO. When this bit = 0b, a Host Memory Access is not taking place (not busy). When this bit = 1b, a Host Memory Access is taking place (busy).
bit 2	Display Engine Busy Status (Read Only) This bit indicates whether the Display Engine is busy. When this bit = 0b, the Display Engine is idle (not busy). When this bit = 1b, the Display Engine is busy.
bit 1	Memory Initialized (Read Only) This bit indicates whether the memory has been initialized. The memory initialization sequence is triggered by the Memory Initialization Trigger bit, REG[0102h] bit 0. When this bit = 0b, the memory has not been initialized. When this bit = 1b, the memory has been initialized.

bit 0

PLL Lock (Read Only)

This bit indicates whether the PLL output is stable (locked). The S4E5B001B00A00 synchronous registers and the internal memory must not be accessed before the PLL output is stable.

When this bit = 0b, the PLL output is not stable.

When this bit = 1b, the PLL output is stable.

REG[0154h] Default = 000	•	Access Port	Register				Read/Write
			Host Memory Acc	cess Port bits 15-8			
15	14	13	12	11	10	9	8
			Host Memory Ac	cess Port bits 7-0			
7	6	5	4	3	2	1	0

bits 15-0

Host Memory Access Port bits [15:0]

These bits are the data port for host memory interface accesses.

REG[015Ah] Default = 000	H ost Packed)0h	Write Transp	arency Regis	ter			Read/Write		
n/a									
15	14	13	12	11	10	9	8		
	Transparency K	ey Value bits 7-4			n	/a			
7	6	5	4	3	2	1	0		

bits 7-4

Transparency Key Value bits [7:4]

These bits configure the transparency key value used for host packed write operations to memory. When the host writes a pixel value equivalent to these bits, the pixel will not be written to memory. For 1 and 2 bpp modes, only the most significant 1 or 2 bits are used.

REG[015Eh] Default = 000	•	Access Pixe	l Swap Config	guration Regis	ster		Read/Write
			r	ı/a			
15	14	13	12	11	10	9	8
		n	/a			Packed Pixel Mo	de Select bits 1-0
7	6	5	4	3	2	1	0

bits 1-0

Packed Pixel Mode Select bits [1:0]

These bits select the pixel order/byte order of the host memory access operations.

When bit 1 = 0b, byte order in memory is not reversed.

When bit 1 = 1b, byte order is swapped when writing to or reading from memory.

When bit 0 = 0b, pixel order in memory is not reversed.

When bit 0 = 1b, the pixel order is reversed when writing to or reading from to memory.

LD_IMG /	Memory Access	Host Memory Data Format						
LD_IMG_AREA Parameter 1 bits 5-4	Mode	REG[015Eh] bits 1-0 = 00b	REG[015Eh] bits 1-0 = 01b	REG[015Eh] bits 1-0 = 10b	REG[015Eh] bits 1-0 = 11b			
00b	1 bpp packed	{P15,P14,P13,P12,P 11,P10,P9,P8,P7,P6, P5,P4,P3,P2,P1,P0}	{P0,P1,P2,P3,P4,P5, P6,P7,P8,P9,P10,P1 1,P12,P13,P14,P15}	{P7,P6,P5,P4,P3,P2, P1,P0,P15,P14,P13, P12,P11,P10,P9,P8}	{P8,P9,P10,P11,P12, P13,P14,P15,P0,P1, P2,P3,P4,P5,P6,P7}			
01b	2 bpp packed	{P7,P6,P5,P4, P3,P2,P1,P0}	{P0,P1,P2,P3, P4,P5,P6,P7}	{P3,P2,P1,P0, P7,P6,P5,P4}	{P4,P5,P6,P7, P0,P1,P2,P3}			
10b	4 bpp packed (Host Raw Access)	{P3,P2, P1,P0}	{P0,P1, P2,P3}	{P1,P0, P3,P2}	{P2,P3, P0,P1}			
11b	8 bpp packed	{P1,P0}	{P0,P1}	{P0,P1}	{P1,P0}			

Note

Host Raw Access is treated the same as 4bpp.

Default = 0000	n				1	1		Read/Write	
		n/a			Command Interrupt Raw Status		Reserved		
15	14		13	12	11	10	9	8	
		Reserved			GPIO Interrupt Raw Status	Reserved	Display Engine Interrupt Raw Status	Reserved	
7	6		5	4	3	2	1	0	
it 11		This bit mand I the Cor When t When t	indicates nterrupt E nmand Int his bit = 0 his bit = 1	upt Raw Status the raw status nable bit, REG terrupt Control b, a Command b, a Command as bit, write a 0t	[0244h] bit 11. bit, REG[02A] Interrupt has r Interrupt has c	This interrupt Eh] bit 0. not occurred. occurred.	is manually co	ontrolled by	
its 10 - 4		Reserve		of these bits is	0000000Ь				
it 3		This bit Interrup GPIO, When t	indicates of Enable see REG[0 his bit = 0	aw Status the raw status bit, REG[0244h 0254h] and REG b, a GPIO Inter b, a GPIO Inter	n] bit 3. For con G[0256h]. rupt has not of	nfiguration and			
			this statu it in REG	is bit, write a 1b [0256h].	to the appropr	riate GPIO[5:0] Negative/Pos	sitive Interru	
it 2		Reserve The det		e of this bit is Ot).				
it 1		This bit the inte Display When t	indicates rrupts in I Engine I his bit = 0	nterrupt Raw St the raw status of REG[033Ah] or nterrupt Enable bb, a Display En b, a Display En	of the Display REG[033Ch] bit, REG[0244 gine Interrupt	is triggered. T 4h] bit 1. has not occurr	his bit is not n		
		To clea	r this statu	is bit, clear the	triggering inter	rrupt in REG[()33Ah] or REO	G[033Ch].	
it 0		Reserve The def		e of this bit is Ol	1				

REG[Defau		errupt	Maske	d Status	Regi	ster				Read/Write
			n/a				Command Interrupt Masked Status		Reserved	
	15	14		13		12	11	10	9	8
			Reserve	ed			GPIO Interrupt Masked Status	Reserved	Display Engine Interrupt Masked Status	Reserved
	7	6		5		4	3	2	1	0
bit 11			This b This in bit 0. When When	this bit = this bit = this bit =	es the s man = 0b, a = 1b, a	masked sta ually contro Command Command	itus of the Com olled by the Con Interrupt has n Interrupt has o to the Comma	nmand Interru ot occurred. occurred.	pt Control bit,	REG[02AEh]
bits 10) - 4		Reserv The de		ue of	these bits is	с 0000000b			
bit 3			This b config When	it indicat guration a this bit =	es the nd sta = 0b, a	tus of each GPIO Inter	tus of the GPI individual GPI rrupt has not oc rrupt has occur	IO, see REG[(ccurred.		
				ar this sta bit in RE			to the appropr	iate GPIO[5:0] Negative/Pos	sitive Interrupt
bit 2			Reserv The de		ue of	this bit is Ol	b.			
bit 1			This b 1) whi When	it indicat ch occur this bit =	es the s whe = 0b, a	n one of the Display Er	d Status atus of the Disp e interrupts in F agine Interrupt agine Interrupt	REG[033Ah] of has not occurr	or REG[033Ch]	
			To cle	ar this sta	atus bi	t, clear the	triggering inter	rupt in REG[(033Ah] or REO	G[033Ch].
bit 0			Reserv The de		ue of	this bit is Ol	b.			

Default = 000	00h		-					Read/Write	
		n/a	L		Command Interrupt Enable		Reserved		
15	14		13	12	11	10	9	8	
		Reser	ved		GPIO Interrupt Enable	Reserved	Display Engine Interrupt Enable	Reserved	
7	6		5	4	3	2	1	0	
bit 11		This pin. 7 bit, F Whe	The Comman REG[02AEh] n this bit = 0t	whether the Cond d Interrupt is n	nanually contro d Interrupt is c	olled using the lisabled.	nterrupt request Command Inte		
bits 10 - 4		Rese The o		of these bits is	0000000b				
bit 3		This The s REG Whe	status of this i [0242h] bit 3 n this bit = 0t	whether the GP	e determined by		upt request on t [0240h] bit 3 (
bit 2		Rese The o		of this bit is Ot).				
bit 1		This HIR((unm Whe	bit controls w Q pin. The sta asked) or RE n this bit = 0t		play Engine Ir rrupt can be de (masked). is disabled.	-	an interrupt re reading REG[0	•	
bit 0		Rese The o		of this bit is Ot).				

Default = 000	0h									
n/a		GPIO5 Pull-down Control	GPIO4 Pull-down Control	GPIO3 Pull-down Control	GPIO2 Pull-down Control	GPIO1 Pull-down Control	GPIO0 Pull-down Control			
15	14	13	12	11	10	9	8			
n	/a	GPIO5 Configuration			GPIO1 Configuration	GPIO0 Configuration				
7	6	5	4	3	2	1	0			
-ita 5 0	pull Wh (def Wh	All GPIO pins have internal pull-down resistors. These bits control the state of the pull-down resistor for each GPIOx pin. When the bit = 0b, the pull-down resistor for the corresponding GPIOx pin is inactive. (default) When the bit = 1b, the pull-down resistor for the corresponding GPIO pin is active.								
bits 5-0	GPIO[5:0] ConfigurationThese bits configure each individual GPIO pin between an input or an output.When this bit = 0b, the corresponding GPIO pin is configured as an input pin. (defau When this bit = 1b, the corresponding GPIO pin is configured as an output pin.									

The GPIOs, when used as inputs, are not debounced.

DECIO25261	CDIO Statual	Control Dogio	107						
Default = XX0		Control Regis	iter				Read/Write		
n	/a	GPIO5 Input Status (RO)	GPIO4 Input Status (RO)	GPIO3 Input Status (RO)	GPIO2 Input Status (RO)	GPIO1 Input Status (RO)	GPIO0 Input Status (RO)		
15	14	13	12	11	10	9	8		
n	/a	GPIO5 Data Output Control	GPIO4 Data Output Control	GPIO3 Data Output Control	GPIO2 Data Output Control	GPIO1 Data Output Control	GPIO0 Data Output Control		
7	6	5	4	3	2	1	0		
	Wh	trns the state of en this bit $= 0$ t en this bit $= 1$ t	o, the GPIOx p	in is 0 (low).	in.				
	Note T		en used as inpu	its, are not deb	oounced.				
bits 5-0	The GPIOs, when used as inputs, are not debounced. s 5-0 GPIO[5:0] Data Output Control When GPIOx is configured as an output (see REG[0250h] bits 5-0), a write to this bit drives the output state of the corresponding GPIOx pin. When this bit = 0b, the corresponding GPIOx pin is driven to 0 (low). (default) When this bit = 1b, the corresponding GPIOx pin is driven to 1 (high).								

REG[0254h] Default = 000	•	ot Enable Reg	ister				Read/Write
n	/a	GPIO5 Negative Edge Interrupt Enable	GPIO4 Negative Edge Interrupt Enable	GPIO3 Negative Edge Interrupt Enable	GPIO2 Negative Edge Interrupt Enable	GPIO1 Negative Edge Interrupt Enable	GPIO0 Negative Edge Interrupt Enable
15	14	13	12	11	10	9	8
n/a		GPIO5 Positive Edge Interrupt Enable	GPIO4 Positive Edge Interrupt Enable	GPIO3 Positive Edge Interrupt Enable	GPIO2 Positive Edge Interrupt Enable	GPIO1 Positive Edge Interrupt Enable	GPIO0 Positive Edge Interrupt Enable
7	6	5	4	3	2	1	0

Note

The GPIO interrupts should not be used with floating GPIO pins. Use the pull-downs in REG[0250h] bits [13:8] to avoid this.

bits 13-8	GPIO[5:0] Negative Edge Interrupt Enable These bits control whether the corresponding GPIOx interrupt (see REG[0256h]) is trig- gered on the negative edge (when the GPIOx pin changes from 1to 0). When this bit = 0b, the corresponding GPIOx interrupt is not triggered on the negative edge. (default) When this bit = 1b, the corresponding GPIOx interrupt is triggered on the negative edge.
bits 5-0	GPIO[5:0] Positive Edge Interrupt Enable These bits control whether the corresponding GPIOx interrupt (see REG[0256h]) is trig- gered on the positive edge (when the GPIOx pin changes from 0 to 1). When this bit = 0b, the corresponding GPIOx interrupt is not triggered on the positive edge. (default) When this bit = 1b, the corresponding GPIOx interrupt is triggered on the positive edge.

REG[0256h] Default = 000		pt Status Regi	ister				Read/Write
n	/a	GPIO5 Negative Edge Interrupt Status	GPIO4 Negative Edge Interrupt Status	GPIO3 Negative Edge Interrupt Status	GPIO2 Negative Edge Interrupt Status	GPIO1 Negative Edge Interrupt Status	GPIO0 Negative Edge Interrupt Status
15	14	13	12	11	10	9	8
n/a		GPIO5 Positive Edge Interrupt Status	GPIO4 Positive Edge Interrupt Status	GPIO3 Positive Edge Interrupt Status	GPIO2 Positive Edge Interrupt Status	GPIO1 Positive Edge Interrupt Status	GPIO0 Positive Edge Interrupt Status
7	6	5	4	3	2	1	0

Note

The GPIO interrupts should not be used with floating GPIO pins. Use the pull-downs in REG[0250h] bits [13:8] to avoid this.

bits 13-8	GPIO[5:0] Negative Edge Interrupt Status These bits indicate the status of the corresponding GPIOx Negative Edge Interrupt. When this bit = 0b, a Negative Edge Interrupt has not occurred. (default) When this bit = 1b, a Negative Edge Interrupt has occurred.
	To clear this status bit, write a 1b to this bit.
bits 5-0	GPIO[5:0] Positive Edge Interrupt Status These bits indicate the status of the corresponding GPIOx Positive Edge Interrupt. When this bit = 0b, a Positive Edge Interrupt has not occurred. (default) When this bit = 1b, a Positive Edge Interrupt has occurred.

To clear this status bit, write a 1b to this bit.

REG[02AEh] Default = 000	Command In Oh	terrupt Contr	ol				Read/Write		
	n/a								
15	14	13	12	11	10	9	8		
n/a									
7	6	5	4	3	2	1	0		

bit 0

Command Interrupt Control

This bit manually controls the Command Interrupt. The status the Command Interrupt is available in REG[0240h] bit 11 (un-masked) and REG[0242h] bit 11 (masked). The interrupt enable is set in REG[0244h] bit 11.

When this bit = 0b, the Command Interrupt is not triggered. When this bit = 1b, the Command Interrupt is triggered.

Default = 000		gine Interrupt R		-			Read/Write		
n/a	Reserved								
15	14	13	12	11	10	9	8		
Pipeline Busy Conflict Detected Interrupt Raw Status			Rese	rved			Operation Trigger Done Interrupt Raw Status		
7	6	5	4	3	2	1	0		
bits 14 - 8	Th	eserved ne default value o		_					
bit 7Pipeline Busy Conflict Detected Interrupt Raw Status This bit indicates the raw status of the Pipeline Busy Conflict Detected Interrupt and is masked by the Pipeline Busy Conflict Detected Interrupt Enable bit, REG[033Eh] bit 7 This interrupt occurs during image buffer updates when a pixel update is required and same pixel is currently being used for frame display (using another Pipeline). When this bit = 0b, a Pipeline Busy Conflict Detected Interrupt has not occurred. When this bit = 1b, a Pipeline Busy Conflict Detected Interrupt has occurred.To clear this status bit, write a 1b to either this bit or REG[033Ch] bit 7.									
bits 6 - 1		eserved ne default value o	of these bits is	00_000b					
bit 0 Operation Trigger Done Interrupt Raw Status This bit indicates the raw status of the Operation Trigger Done Interrupt a by the Operation Trigger Done Interrupt Enable bit, REG[033Eh] bit 0. When this bit = 0b, an Operation Trigger Done Interrupt has not occurre When this bit = 1b, an Operation Trigger Done Interrupt has occurred.							l is not masked		
	To clear this status bit, write a 1b to either this bit or REG[033Ch] bit 0.								

Default = 0000		ngine Interrupt					Read/Write			
n/a	Reserved									
15	14	13	12	11	10	9	8			
Pipeline Busy Conflict Detected Interrupt Masked Status			Rese	rved			Operation Trigger Done Interrupt Masked Status			
7	6	5	4	3	2	1	0			
bits 14 - 8	Т	Reserved The default value		_						
bit 7Pipeline Busy Conflict Detected Interrupt Masked Status This bit indicates the masked status of the Pipeline Busy Conflict Detected Interrupt (REG[033Eh] bit 7). This interrupt occurs during image buffer updates when a pixel up is required and the same pixel is currently being used for frame display (using another Pipeline). When this bit = 0b, a Pipeline Busy Conflict Detected Interrupt has not occurred. When this bit = 1b, a Pipeline Busy Conflict Detected Interrupt has occurred. To clear this status bit, write a 1b to either this bit or REG[033Ah] bit 7.										
bits 6 - 1		Reserved The default value	of these bits is	00_000b						
bit 0 Operation Trigger Done Interrupt Masked Status This bit indicates the masked status of the Operation Trigger Done Interrupt (s REG[033Eh] bit 0). When this bit = 0b, an Operation Trigger Done Interrupt has not occurred. When this bit = 1b, an Operation Trigger Done Interrupt has occurred.										
	Т	To clear this statu	ıs bit, write a 1b	to either this	bit or REG[03	3Ah] bit 0.				

Default = 0000		ne mierrupi i	Enable Registe	51			Read/Write				
n/a		Reserved									
15	14	13	12	11	10	9	8				
Pipeline Busy Conflict Detected Interrupt Enable			Res	erved			Operation Trigger Done Interrupt Enable				
7	6	5	4	3	2	1	0				
bits 14 - 8 bit 7	Reserved The default value of these bits is 000_0000b Pipeline Busy Conflict Detected Interrupt Enable This bit controls whether the Pipeline Busy Conflict Detected Interrupt triggers a Display Engine Interrupt (see REG[0240h] and REG[0242h]). The status of this interrupt can be determined by reading REG[033Ah] bit 7 (unmasked) or REG[033Ch] bit 7 (masked). When this bit = 0b, the interrupt is disabled. When this bit = 1b, the interrupt is enabled.										
bits 6 - 1	100	erved e default value	of these bits is	s 00_000b							
bit 0	Thi Inte min Wh	The default value of these bits is 00_0000b Operation Trigger Done Interrupt Enable This bit controls whether the Operation Trigger Done Interrupt triggers a Display Engine Interrupt (see REG[0240h] and REG[0242h]). The status of this interrupt can be deter- mined by reading REG[033Ah] bit 0 (unmasked) or REG[033Ch] bit 0 (masked). When this bit = 0b, the interrupt is disabled. When this bit = 1b, the interrupt is enabled.									

REG[03DEh] Default = 000	Read/Write									
	Cursor Memory Access Port bits 15-8									
15	14	13	12	11	10	9	8			
	Cursor Memory Access Port bits 7-0									
7	6	5	4	3	2	1	0			

bits 15-0

Cursor Memory Access Port bits [15:0]

Change Record

X93A-A-006-01 Revision 1.2 - Issued: February 22, 2013

• Official release of this document.

X93A-A-006-01 Revision 1.0 - Issued: September 25, 2012

• Preliminary release of this document.

AMERICA

EPSON ELECTRONICS AMERICA, INC.

214 Devcon Drive San Jose, CA 95112,USA Phone: +1-800-228-3964 FAX: +1-408-922-0238

EUROPE

EPSON EUROPE ELECTRONICS GmbH

Riesstrasse 15, 80992 Munich, GERMANY Phone: +49-89-14005-0 FAX: +49-89-14005-110

ASIA

EPSON (CHINA) CO., LTD. 7F, Jinbao Bldg., No.89 Jinbao St., Dongcheng District, Beijing 100005, CHINA Phone: +86-10-8522-1199 FAX: +86-10-8522-1125

SHANGHAI BRANCH

7F, Block B, High-Tech Bldg., 900, Yishan Road, Shanghai 200233, CHINA Phone: +86-21-5423-5577 FAX: +86-21-5423-4677

SHENZHEN BRANCH

12F, Dawning Mansion, Keji South 12th Road, Hi-Tech Park, Shenzhen 518057, CHINA Phone: +86-755-2699-3828 FAX: +86-755-2699-3838

EPSON HONG KONG LTD.

Unit 715-723, 7/F Trade Square, 681 Cheung Sha Wan Road, Kowloon, Hong Kong Phone: +852-2585-4600 FAX: +852-2827-4346

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

14F, No. 7, Song Ren Road, Taipei 110, TAIWAN Phone: +886-2-8786-6688 FAX: +886-2-8786-6660

EPSON SINGAPORE PTE., LTD.

1 HarbourFront Place, #03-02 HarbourFront Tower One, Singapore 098633 Phone: +65-6586-5500 FAX: +65-6271-3182

SEIKO EPSON CORP.

KOREA OFFICE 5F, KLI 63 Bldg., 60 Yoido-dong Youngdeungpo-Ku, Seoul, 150-763, KOREA Phone: +82-2-784-6027 FAX: +82-2-767-3677

SEIKO EPSON CORP. MICRODEVICES OPERATIONS DIVISION

IC Sales & Marketing Department

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN Phone: +81-42-587-5814 FAX: +81-42-587-5117

> Document Code: X93A-A-006-01 First Issue: September 2012