
Cherry MX Switch Breakout Hookup Guide

Introduction
Cherry MX Keyswitches are top-of-the-line mechanical keyboard switches.
They’re satisfyingly “clicky”, reliable up to tens-of-millions of key presses,
and an essential component in gaming and programming keyboards. To
help make the switches more easily adaptable to breadboard or perfboard-
based projects, we created the SparkFun Cherry MX Switch Breakout.

In addition to breaking out the switch contacts to breadboard-compatible
headers, the breakout also provides access to an optional switch-mounted
LED. Plus, the pin break-outs are designed with keyboard matrix-ing in
mind, so you can interconnect as many boards as you’d like into a row-
column configuration, keeping the I/O-pin requirements as low as possible.

The Cherry MX Switch Breakout is a perfect prototyping tool for input
devices ranging from a single key to fully-custom 101-key keyboards.

Covered In This Tutorial

This tutorial documents the SparkFun Cherry MX Switch Breakout,
providing an overview of the breakout, plus some assembly and usage tips.
It’s broken down into a few sections, which you can navigate around using
the buttons on the right.

Or use these links below to skip ahead:

1. Hardware Overview – A breakdown of the Cherry MX Switch
Breakout Board features.

2. Assembly Tips – Tips for adding headers, wires, resistors, and
diodes to the breakout board.

3. Testing the Circuit – A simple circuit to test the switch, LED, and any
other components you may add on.

4. Matrixing Breakouts – A guide to combining two or more breakout
boards into a row/column matrix, and scanning them with an Arduino.

Bill of Materials

Page 1 of 18

In addition to the Cherry MX Switch there are a few additional items you
may want to add on to the Breakout Board.

3mm LEDs can be placed inside the switch. Pick any color you please: red,
green, yellow, or cycling.

The breakout board also provides a footprint for an optional LED-current-
limiting resistor. 1/6W PTH resistors, like these 330Ω’s, are
recommended.

If you’re matrixing multiple breakout boards together, you may want to add
a small-signal diode to the board to help isolate the switches and prevent
any possible “ghosting”. Standard 1N4148 diodes should do the trick for
this.

If you need to tie the board down, it has mounting holes designed to fit 2-56
screws and nuts.

LED - 3mm Cycling RGB
(slow)
 COM-11448

LED - Basic Red 3mm
 COM-00533

LED - Basic Green 3mm
 COM-09650

LED - Basic Yellow 3mm
 COM-00532

Resistor 330 Ohm 1/6 Watt
PTH - 20 pack
 COM-11507

Diode Small Signal - 1N4148
 COM-08588

Page 2 of 18

You’ll need soldering tools, including a soldering iron and solder. Other
tools, like wire strippers, flush cutters, and a third hand, can also be helpful.

Finally, headers or wire will help connect the breakout board to your
breadboard or development platform.

Suggested Reading

This hookup guide relies on some beginner-level electronics knowledge. If
any of the subjects below sound foreign to you, consider checking out that
tutorial first:

Nut - Metal (2-56)
 PRT-08995

Flush Cutters - Hakko
 TOL-11952

Soldering Iron - 30W (US,
110V)
 TOL-09507

Wire Strippers - 30AWG
(Hakko)
 TOL-12630

Solder Lead Free - 15-gram
Tube
 TOL-09163

Resistors Diodes

Page 3 of 18

Hardware Overview
While it may seem like a simple breakout, the Cherry MX Switch Breakout
board is a little over-engineered. Here’s a quick breakdown of the pin
breakouts and additional features of the board.

Breakout Pin Labels

Up to four pins are used to interact with the Cherry MX Switch – two for the
switch contacts and two for the optional LED. These pins are broken out on
all sides of the board, labeled either “1”, “2”, “+”, or “-”. Those labels are
short for:

Pin Label Pin Description

1 Switch contact 1

2 Switch contact 2

+ LED anode

- LED cathode

A tutorial on all things resistors.
What is a resistor, how do they
behave in parallel/series, decoding
the resistor color codes, and resistor
applications.

A diode primer! Diode properties,
types of diodes, and diode
applications.

Switch Basics
A tutorial on electronics' most
overlooked and underappreciated
component: the switch! Here we
explain the difference between
momentary and maintained switches
and what all those acronyms (NO,
NC, SPDT, SPST, ...) stand for.

Light-Emitting Diodes (LEDs)
Learn the basics about LEDs as well
as some more advanced topics to
help you calculate requirements for
projects containing many LEDs.

Page 4 of 18

If you only want to use the switch, the pins labeled “1” and “2” should be all
you need. If you’re integrating a 3mm LED, the LED’s anode and cathode
will be accessible on the “+” and “-” pins respectively.

Header Pairs

Every side of the breakout board is equipped with a four-pin header (don’t
confuse them with the diode or resistor pins), but not all of these headers
are created equally! Two headers break out all four pins, while the other
two headers only break out the LED anode and one of the switch contacts.

The pair of headers on the left and right sides of the board break out all
four pins. These are intended for primary use. You can solder male pins
into both of these headers, and plug the switch into a breadboard.

The pair of headers breaking only the LED anode and switch contact 1 are
designed for keypad matrices, where multiple boards are connected in
row/column pairs. More on this later in the tutorial.

Assembly Tips
To use the breakout board, at a bare minimum you’ll need to solder the
Cherry MX Switch and either headers or wires to the “1” and “2” pins. Male
headers work well for most breadboarding applications, while solid-core or
stranded wire work well if you’re wiring the breakout up to something afar.

Break Away Headers -
Straight
 PRT-00116

Hook-Up Wire - Assortment
(Solid Core, 22 AWG)
 PRT-11367

Page 5 of 18

There are plenty of other addon options, including a 3mm LED, current-
limiting resistor, and switch isolating diodes, which are all documented
below.

3mm LED

Most Cherry MX Switches – including the blue, MX1A-E1NW switch we
carry – have a recess in their body designed to fit a small 3mm LED.

An “A” on the top side of the switch and a diode symbol on the backside
both show the recommended polarity of the LED.

The LED’s recessed home in the switch. Note the “A” indicator for the
LED’s “anode.”

To add an LED to the switch, insert the anode and cathode legs of the LED
into their respective pins – the LED’s longer, anode leg should be inserted
into the “A” pin – then flip the board over, and solder the LED to the
breakout board.

Hook-Up Wire - Assortment
(Stranded, 22 AWG)
 PRT-11375

Break Away Male Headers -
Right Angle
 PRT-00553

Page 6 of 18

Adding a Current-Limiting Resistor

If you’re adding an LED to the switch, more likely than not, you’ll need a
current-limiting resistor. The breakout provides a resistor footprint, in-line
with the LED. You’ll find the resistor pads on the bottom-right corner of the
board.

Small PTH resistors are recommended for this application – 1/6W or
1/8W through-hole packages work best. 1/4W resistors can be too
large – potentially interfering with any keycap that may be on the
switch.

To connect an LED to the board, bend one of the resistor legs so it’s
parallel with the other. Then insert both legs into the board like so:

You’ll also need to cut the “R” jumper on the back side of the board,
which might be easier to do before you solder anything. A hobby knife and
a steady hand should do the trick.

By default, the board has a short across the current-limiting resistor. Cutting
this jumper removes the short, and functionally adds the resistor to the
circuit.

Ghost-Prevention Diode

If you plan on interconnecting four-or-more breakouts – creating a
row/column matrix of switches – you may also want to consider adding a
small-signal diode to help prevent “ghosting”. The 1N4148 small-signal
diode is perfectly fit for this task.

Page 7 of 18

Switch Matrix Ghosting

"Ghosting" is a problem that can adversely affect the detection of
multiple, simultaneous button presses. Without diode protection,
certain combinations of simultaneous button-presses can cause one-
or-more un-actuated buttons to appear pressed ("ghosted"). The result
is a false-positive key-press, which can cause undesired behavior in a
project.

To avoid button ghosting, small-signal diodes can be placed in-circuit,
after every key. The diode prevents a key's signal from "backfeeding"
back through the line.

While the diode does prevent ghosting, it does place certain
restrictions on your button-press detection. It forces the switch contact
on the diode's anode (positive) side to be at a higher voltage than the
other contact, as the switch can only conduct meaningful current in
one direction.

For more on keypad ghosting, check out Byron's explanation in the
Button Pad Hookup Guide.

A small, “vertical” diode footprint is broken out in the upper-right corner of
the board. Near one of the pads in this footprint, a small, white line
designates which pin should be connected to the diode’s cathode
(negative) pin.

To solder a diode into the board, bend the anode leg down, so it’s parallel
with the cathode leg. Then insert the diode into the board – making sure to
place the cathode leg (usually indicated by a black bar) into the marked
hole.

You’ll also need to cut the “D” jumper on the back side of the board –
otherwise the diode will be shorted over. (This may be easier if you do it
before soldering anything.)

Page 8 of 18

Like the resistor, the breakout shorts across the diode. Cutting this jumper
removes the short and functionally adds the diode to the circuit.

Mounting Hole Size

A pair of mounting holes are provided on opposite corners of the breakout
board. These holes are designed to fit 2-56 (3/8") screws. Flat heads are
recommended, though rounded heads can work as well.

If you’re going to be doing a lot of jamming on your keyboard, you’ll want it
tied down!

Testing the Circuit
With just a power supply and a few wires, you can create a quick circuit to
test out your switch, LED, resistor and diode. Wire up the “+” pin to 5V (or
3.3V). Then connect “-” and “1” together. And wire up “2” to ground. (If
you didn’t add a current-limiting resistor, make sure you add one externally!
It can take the place of the wire from “+” to power, or 2 to ground.)

Screw - Phillips Head (3/8",
2-56)
 PRT-08993

Nut - Metal (2-56)
 PRT-08995

Page 9 of 18

Now actuate the switch, and watch for the LED to illuminate.

Note that, if you’ve added the ghosting diode, this is the only polarity in
which the switch will work – pin 1 must be at a higher voltage than pin 2.

Matrixing Breakouts
The Cherry MX Switch Breakout Board’s are designed with switch matrix-
ing in mind. By creating a row/column matrix of switches, you can save on
potentially dozens of microcontroller I/O pins. A 64-key keyboard, for
example, can be scanned with just 16 I/O pins.

Key Spacing

While there is no specific standard for keyboard key spacing, most full-size
keyboard keys are spaced by ¾" (0.75in) from center-to-center. Rows may
be offset by either 3/8" (0.375in) or 3/16" (0.1875in), or not at all.

Typical keyboard row offsets. (Image courtesy of The PC Guide.)

The breakout is designed to make typical key spacing as easy as possible.
By cleverly jumping one board to the next, you can add any of the standard
offsets to nearby rows.

Page 10 of 18

So, plan out your keyboard, and grab a soldering iron!

Creating a Key Matrix

To create a matrix of switches, arrange your boards as desired. Along the
rows, line up the “2”, “1”, “-”, and “+” labels. You will, however, only
connect the “2” and “-” pins across rows. Solder your rows together
first:

There’s not an easy method to soldering boards together. You’ll
probably need wire strippers to split and cut solid-core wire into tiny
(~3/8") pieces. A third hand can be a big-time help keeping boards
stationary while you solder the little wires in place.

Once you’ve created your rows, line up the columns by matching the “1”
and “+” pins. There are three offset options available, as documented in
the image above.

Here is an example of a fully built-up 3x3 matrix. The middle row is offset
from the top by 3/16", and the bottom row is offset from the middle by 3/8".
This will make the middle row equivalent to a keyboard’s A, S, and D keys,
the top row Q, W, and E, and the bottom row Z, X, and C – we’re making a
9-key keypad centered around WASD!

Finish off the soldering job by connecting wires to the row and column pins
you’ll need access to. If you’re not using any LEDs, you’ll only need to
solder to the “1” pins along the rows, and “2” pins along the columns.

Page 11 of 18

Don’t forget to add your switches, and LEDs, resistors, or diodes, should
your project require them!

Keypad Scanning Arduino Code

Here’s a simple Arduino sketch, designed to work with a 9-key, 3x3 matrix,
but easily expandable for larger keypads.

The sketch assumes a circuit like this:

It may look like a mess of wires, but – with 9 switches and LEDs – we’ve at
least turned 18 wires into 12.

Row/Column
Name

Breakout
Label

Arduino
Pin

LED Row 1 - 2

LED Row 2 - 3

LED Row 3 - 4

LED Column
1

+ 5

LED Column
2

+ 6

LED Column
3

+ 7

Switch Row 1 2 8

Switch Row 2 2 9

Switch Row 3 2 10

Switch
Column 1

1 11

Switch
Column 2

1 12

Page 12 of 18

Switch
Column 3

1 13

Then copy this code and upload:

Note: This example assumes you are using the latest version of the
Arduino IDE on your desktop. If this is your first time using Arduino,
please review our tutorial on installing the Arduino IDE.
If you have not previously installed an Arduino library, please check
out our installation guide.

Page 13 of 18

/* Button/LED Matrix Scanning Example 3x3 Keypad
 Code derived from Button Pad Hookup Guide Example 2
 by Byron Jacquot @ SparkFun Electronics
 https://learn.sparkfun.com/tutorials/buttonpadhookupgu
ide#exercise2monochromeplusbuttons
*/
//////////////////////
// Config Variables //
//////////////////////
#define NUM_LED_COLS (3) // Number of LED columns (+, anode)
#define NUM_LED_ROWS (3) // Number of LED rows (, cathode)
#define NUM_BTN_COLS (3) // Number of switch columns (isolatin
g diode anode)
#define NUM_BTN_ROWS (3) // Number of switch rows (isolating d
iode cathode)

// Debounce builtin to the code. This sets the number of butt
on
// high or low senses that trigger a press or release
#define MAX_DEBOUNCE (3)

////////////////////
// Hardware Setup //
////////////////////
static const uint8_t btnRowPins[NUM_BTN_ROWS] = {8, 9, 1
0}; // Pins connected to switch rows (2)
static const uint8_t btnColPins[NUM_BTN_COLS] = {11, 12, 1
3}; // Pins connected to switch columns (1)
static const uint8_t ledRowPins[NUM_LED_ROWS] = {2, 3, 4}; //
Pins connected to LED rows ()
static const uint8_t ledColPins[NUM_LED_COLS] = {5, 6, 7}; //
Pins connected to LED cols (+)

//////////////////////
// Global Variables //
//////////////////////
static bool LED_buffer[NUM_LED_COLS][NUM_LED_ROWS]; // Keeps t
rack of LED states
static int8_t debounce_count[NUM_BTN_COLS][NUM_BTN_ROWS]; // O
ne debounce counter per switch

void setup()
{
 Serial.begin(9600);

setupLEDPins();
setupSwitchPins();

// Initialize the debounce counter array
for (uint8_t i = 0; i < NUM_BTN_COLS; i++)

 {
for (uint8_t j = 0; j < NUM_BTN_ROWS; j++)

 {
 debounce_count[i][j] = 0;
 }
 }
// Initialize the LED buffer
for (uint8_t i = 0; i < NUM_LED_COLS; i++)

 {
for (uint8_t j = 0; j < NUM_LED_ROWS; j++)

 {
 LED_buffer[i][j] = 0; // All LED's off
 }
 }

Page 14 of 18

}

void loop()
{
scan();

}

static void scan()
{
// Each run through the scan function operates on a single r

ow
// of the matrix, kept track of using the currentRow variabl

e.
static uint8_t currentRow = 0;

 uint8_t i, j; // for loop counters

// Select current row, and write all components on that row
LOW.
// That'll set the LED anode's LOW, and write the switch

"2" pins LOW.
 // If diodes were added, "2' should be connected to the diod
e cathode
 digitalWrite(btnRowPins[currentRow], LOW);
 digitalWrite(ledRowPins[currentRow], LOW);

 // Look at the LED_buffer variable along this row.
 // If any column is 1, turn the LED on.
 // Otherwise LED will be left off
 for (i = 0; i < NUM_LED_COLS; i++)
 {
 if (LED_buffer[currentRow][i])
 {
 digitalWrite(ledColPins[i], HIGH); // Turn LED on
 }
 }

 // Scan through switches on this row:
 for (j = 0; j < NUM_BTN_COLS; j++)
 {
 // Read the button. If it's pressed, it should be LOW.
 if (digitalRead(btnColPins[j]) == LOW)
 {
 if (debounce_count[currentRow][j] < MAX_DEBOUNCE)
 { // Increment a debounce counter
 debounce_count[currentRow][j]++;
 if (debounce_count[currentRow][j] == MAX_DEBOUNCE)
 { // If debounce counter hits MAX_DEBOUNCE (default:
3)
 // Trigger key press Do anything here...
 Serial.print("Key pressed ");
 Serial.println((currentRow * NUM_BTN_COLS) + j);
 LED_buffer[currentRow][j] = 1; // Set LED to turn o
n next time through
 }
 }
 }
 else // Otherwise, button is released
 {
 if (debounce_count[currentRow][j] > 0)
 {
 debounce_count[currentRow][j]; // Decrement debounc
e counter
 if (debounce_count[currentRow][j] == 0)
 { // If debounce counter hits 0
 // Trigger key release Do anything here...

Page 15 of 18

 Serial.print("Key released "); // Trigger key releas
e
 Serial.println((currentRow * NUM_BTN_COLS) + j);
 LED_buffer[currentRow][j] = 0; // Set LED to turn of
f next time through
 }
 }
 }
 }

// Once done scanning, deselect the switch and LED rows
// by writing them HIGH.
digitalWrite(btnRowPins[currentRow], HIGH);
digitalWrite(ledRowPins[currentRow], HIGH);

// Then turn off any LEDs that might have turned on:
for (i = 0; i < NUM_LED_ROWS; i++)

 {
digitalWrite(ledColPins[i], LOW);

 }

// Increment currentRow, so next time we scan the next row
 currentRow++;
if (currentRow >= NUM_LED_ROWS)

 {
 currentRow = 0;
 }
}

static void setupLEDPins()
{
 uint8_t i;

// LED drive rows written LOW when active, HIGH otherwise
for (i = 0; i < NUM_LED_ROWS; i++)

 {
pinMode(ledRowPins[i], OUTPUT);
digitalWrite(ledRowPins[i], HIGH);

 }

// LED select columns Write HIGH to turn an LED on.
for (i = 0; i < NUM_LED_COLS; i++)

 {
pinMode(ledColPins[i], OUTPUT);
digitalWrite(ledColPins[i], LOW);

 }
}

static void setupSwitchPins()
{
 uint8_t i;

// Button drive rows written LOW when active, HIGH otherwi
se
for (i = 0; i < NUM_BTN_ROWS; i++)

 {
pinMode(btnRowPins[i], OUTPUT);

// with nothing selected by default
digitalWrite(btnRowPins[i], HIGH);

 }

// Buttn select columns. Pulled high through resistor. Will
be LOW when active
for (i = 0; i < NUM_BTN_COLS; i++)

Page 16 of 18

 {
pinMode(btnColPins[i], INPUT_PULLUP);

 }
}

Whenever you press a switch, the LED on that switch should also light up.
Releasing the switch turns the LED off.

Adapting the Code

The code is adaptable for larger or smaller matrices, with a few
modifications towards the top of the sketch.

Modify the number of rows or columns in the Config Variables section:

//////////////////////
// Config Variables //
//////////////////////
#define NUM_LED_COLS (3) // Number of LED columns (+, anode)
#define NUM_LED_ROWS (3) // Number of LED rows (, cathode)
#define NUM_BTN_COLS (3) // Number of switch columns (diode an
ode)
#define NUM_BTN_ROWS (3) // Number of switch rows (diode catho
de)

And/or convert the pin connections in the Hardware Setup section:

////////////////////
// Hardware Setup //
////////////////////
static const uint8_t btnRowPins[NUM_BTN_ROWS] = {8, 9, 1
0}; // Pins connected to switch rows (2)
static const uint8_t btnColPins[NUM_BTN_COLS] = {11, 12, 1
3}; // Pins connected to switch columns (1)
static const uint8_t ledRowPins[NUM_LED_ROWS] = {2, 3, 4}; //
Pins connected to LED rows ()
static const uint8_t ledColPins[NUM_LED_COLS] = {5, 6, 7}; //
Pins connected to LED cols (+)

If you've added ghost-prevention diodes, keep in mind that the
switch's "1" pins (organized as the columns) must be at a higher
potential than the row, "2" pins.

To scan the keypad matrix, we recommend pulling the row pins high
using a pull-up resistor (often internal to I/O pins). Then progressively
pulling the column pins to ground and checking which of the rows, if
any, are pulled low as well.

Resources and Going Further
The Cherry MX Switch Breakout Board is open-source! If you want to check
out the schematic or PCB design files, feel free to peruse our GitHub
repository.

Once you’ve completed your keypad, consider topping off your keys with a
keycap.

Page 17 of 18

There is a ridiculous variety to Cherry MX keycaps – they vary by color,
translucence, height, labels, and size. There are plenty of keycap sources
out there, including WASD Keyboards and MechanicalKeyboards.com.

If you’d like to keep exploring SparkFun tutorials for project ideas, here are
some guide’s we’d recommend:

Reaction Timer
Demonstrate mental chronometry
with this simple reaction timer!

WAV Trigger Hookup Guide
V11
An introduction to being able to
trigger music and sound effects
based on buttons, sensors, or
switches using the WAV Trigger
board.

SX1509 I/O Expander
Breakout Hookup Guide
Learn how you can use the SX1509
to control 16 LEDs or up to 64
buttons with just two pins.

Button Pad Hookup Guide
An introduction to matrix scanning,
using the SparkFun 4x4 Button Pad.

Page 18 of 18

2/5/2018https://learn.sparkfun.com/tutorials/cherry-mx-switch-breakout-hookup-guide?_ga=2.22263...

